Download Free Novel Prospects In Oxidative And Nitrosative Stress Book in PDF and EPUB Free Download. You can read online Novel Prospects In Oxidative And Nitrosative Stress and write the review.

Oxidative stress plays a crucial role in the pathophysiology of various diseases when there is a disruption of the intracellular redox balance and the homeostatic balance between cellular oxidants and antioxidants. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) react with molecular targets including proteins, lipids, and nucleic acids contributing to mitochondrial injury and cellular dysfunction. This book intends to provide the readers with an extensive overview of the novel approaches and prospects based on oxidative and nitrosative stress in the pathophysiology of various diseases and in the current treatment strategies with antioxidants.
Antioxidants are one of the most sought-after biological compounds of interest to both scientific and nonscientific communities. The term gained popularity with the advent of identifying these compounds as having the ability to maintain health and wellness by combating against pathways leading to non-communicable diseases. This book covers several aspects of antioxidants—mechanisms of action, assays of measuring potency, sources, and even methods of isolation and identification. While it may seem these aspects have been covered in depth in several publications before this, this book intends to be positioned as an update, especially since the area of antioxidant research is as dynamic as ever. There are several chapters that might be of interest to health buffs, specifically those who are quite keen on maintaining health and wellness.
Fruits of the Brazilian Cerrado: Composition and Functional Benefits describes the nutritional, chemical and physical characteristics of the fruits of the Cerrado, as well as their pharmacological effects and use in phytotherapics. Chapters are dedicated to the morphological characteristics, macronutrients, micronutrients and active compounds of various fruits, with separate sections covering their peels, leaves, nuts, pulps, and other components. The text also includes detailed studies on the treatment of diseases with these natural products, as well as their applications in popular use by local communities. Authors explain the importance of bioactive compounds found in the fruits and their possible mechanisms of action in the organism. This text thus provides a valuable reference to researchers studying a range of topics, including functional foods, phytotherapy, and plant science.
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
Lipid peroxidation can occur via either enzymatic or nonenzymatic reactions due to excess production of free radical molecules. This process culminates in cellular damage causing various diseases. This book examines lipid peroxidation as a current and future biomarker of oxidative stress.
Cancer will remain a global major health problem unless new diagnostic, prognostic, and management approaches are discovered to address both loss of life and quality of life. Here we summarize the general physiology, pathology, heterogeneity, and evolution of cancer, current status, limitations and challenges associated with prevention, incidence, treatment, survival, and mortality, as well as future directions with regards to solid tumors. Perspectives are provided on how to improve pre-clinical understandings, outcomes, and patient care. Further, this comprehensive, timely overview of the literature has educational value as part of an academic course, seminar, or as a supplementary text.
Oxidative Stress and Antioxidant Protection: The Science of Free Radical Biology and Disease Oxidative Stress and Antioxidant Protection begins with a historical perspective of pioneers in oxidative stress with an introductory section that explains the basic principles related to oxidative stress in biochemistry and molecular biology, demonstrating both pathways and biomarkers. This section also covers diagnostic imaging and differential diagnostics. The following section covers psychological, physiologic, pharmacologic and pathologic correlates. This section addresses inheritance, gender, nutrition, obesity, family history, behavior modification, natural herbal-botanical products, and supplementation in the treatment of disease. Clinical trials are also summarized for major medical disorders and efficacy of treatment, with particular focus on inflammation, immune response, recycling, disease progression, outcomes and interventions. Each of the chapters describes what biomarker(s) and physiological functions may be relevant to a concept of specific disease and potential alternative therapy. The chapters cover medical terminology, developmental change, effects of aging, senescence, lifespan, and wound healing, and also illustrates cross-over exposure to other fields. The final chapter covers how and when to interpret appropriate data used in entry level biostatistics and epidemiology. Authored and edited by leaders in the field, Oxidative Stress and Antioxidant Protection will be an invaluable resource for students and researchers studying cell biology, molecular biology, and biochemistry, as well professionals in various health science fields.
The imbalance between the production of reactive oxygen species (ROS) and antioxidant defenses determines a state known as oxidative stress. Higher levels of pro-oxidants compared to antioxidant defenses may generate oxidative damage, which, in turn, may lead to modifications in cellular proteins, lipids, and DNA, reducing functional capacity and increasing the risk of diseases. Nevertheless, the clearance of harmful reactive chemical species is achieved by the antioxidant defense systems. These protection systems are referred to as the first and second lines of defense and comprise the classic antioxidants, enzymatic and nonenzymatic defenses, including glutathione. This book presents and discusses the advancement of research on health and diseases and their underlying mechanisms, exploring mainly aspects related to the glutathione antioxidant system.
Oxygen represents only 20% of the Earth's atmosphere, yet it is vital for the survival of aerobic organisms. There is a dark part of the use of oxygen that consists in generating reactive species that are potentially harmful to living organisms. Moreover, reactive oxygen species can combine with nitrogen derivatives and generate many other reactive species. Thus, living organisms are continuously assaulted by reactive species from external or internal sources. However, the real danger comes in the case of high concentrations and prolonged exposure to these species. This book presents an image of the mechanisms of action of reactive species and emphasizes their involvement in diseases. Inflammation and cancer are examined to determine when and how reactive species turn the evolution of a benign process to a malignant one. Some answers may come from recent studies indicating that reactive species are responsible for epigenetic changes.