Download Free Novel Neutrosophic Cubic Graphs Structures With Application In Decision Making Problems Book in PDF and EPUB Free Download. You can read online Novel Neutrosophic Cubic Graphs Structures With Application In Decision Making Problems and write the review.

Graphs allows us to study the different patterns of inside the data by making a mental image. The aim of this paper is to develop neutrosophic cubic graph structure which is the extension of neutrosophic cubic graphs. As neutrosophic cubic graphs are defined for one set of edges between vertices while neutrosophic cubic graphs structures are defined for more than one set of edges. Further, we defined some basic operations such as Cartesian product, composition, union, join, cross product, strong product and lexicographic product of two neutrosophic cubic graph structures. Several types of other interesting properties of neutrosophic cubic graph structures are discussed in this paper. Finally, a decision-making algorithm based on the idea of neutrosophic cubic graph structures is constructed. The proposed decision-making algorithm is applied in a decision-making problem to check the validity.
In this research study, we present concept of intuitionistic neutrosophic graph structures. We introduce the certain operations on intuitionistic neutrosophic graph structures and elaborate them with suitable examples.
The neutrosophic cubic sets are an extension of the neutrosophic sets on the cubic sets. It contains three variables, which respectively represent the membership degree, non-membership degree and uncertainty of the element to the set. The score function is an important indicator in the multi-attribute decision-making problem. In this paper, we consider the possibility that an element belongs to a set and put forward the definition of possibility neutrosophic cubic sets. On this basis, we introduce some related concepts and give the binary operation of possibility neutrosophic cubic sets and use specific examples to supplement the corresponding definition. Meanwhile, a decision-making method based on the score function of possibility neutrosophic cubic sets is proposed and a numerical example is given to illustrate the effectiveness of the proposed method.
In this paper we extend fuzzy analytic hierarchy process into neutrosophic cubic environment. The neutrosophic cubic analytic hierarchy process can be used to manage more complex problems when the decision makers has a number of uncertainty, assigning preferences values to the considered object. We also de ne the concept of triangular neutrosophic cubic numbers and their operations laws. The advantages of the proposed methodology and the application of neutrosophic cubic analytic hierarchy process in decision making are shown by testing the numerical example in practical life.
During the last two decades, the world has experienced three major outbreaks of Coronaviruses, namely severe acute respiratory syndrome (SARS- CoV), middle east respiratory syndrome (MERS-CoV), and the current ongoing pandemic of severe acute respiratory syndrome 2 (SARS-CoV-2). The SARS-CoV-2 caused the disease known as Coronavirus Disease 2019 (COVID-19). Since its discovery for the first time in Wuhan, China, in December 2019, the disease has spread very fast, and cases have been reported in more than 200 countries/territories. In this study, the idea of Smarandache’s pathogenic set is used to discuss the novel COVID-19 spread. We first introduced plithogenic graphs and their subclass, like plithogenic fuzzy graphs. We also established certain binary operations like union, join, Cartesian product, and composition of pathogenic fuzzy graphs, which are helpful when we discuss combining two different graphs. In the end, we investigate the spreading trend of COVID-19 by applying the pathogenic fuzzy graphs. We observe that COVID-19 is much dangerous than (MERS-CoV) and (SARS-CoV). Moreover, as the SARS-CoV and MERS-CoV outbreaks were controlled, there are greater chances to overcome the current pandemic of COVID-19 too. Our model suggests that all the countries should stop all types of traveling/movement across the borders and internally too to control the spread of COVID-19. The proposed model also predicts that in case precautionary measures have not been taken then there is a chance of severe outbreak in future.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This book addresses new concepts, methods, algorithms, modeling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, linear problems and new information related to optimization for the topic from the theoretical and applied viewpoints of neutrosophic sets and logic. The book is an innovatory of new tools and procedures, such as: Neutrosophic Statistical Tests and Dependent State Samplings, Neutrosophic Probabilistic Expert Systems, Neutrosophic HyperSoft Set, Quadripartitioned Neutrosophic Cross-Entropy, Octagonal and Spherical and Cubic Neutrosophic Numbers used in machine learning. It highlights the process of neutrosofication {which means to split the universe into three parts, two opposite ones (Truth and Falsehood), and an Indeterminate or neutral one (I) in between them}. It explains Three-Ways Decision, how the universe set is split into three different distinct areas, in regard to the decision process, representing: Acceptance, Noncommitment, and Rejection, respectively. The Three-Way Decision is used in the Neutrosophic Linguistic Rough Set, which has never been done before.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.