Download Free Novel Enzyme Dna Inorganic Materials Book in PDF and EPUB Free Download. You can read online Novel Enzyme Dna Inorganic Materials and write the review.

The very first examples of protein/DNA/inorganic nanocomposite materials are described. Surprisingly, the presence of DNA enhanced the properties of the bound protein. The layered inorganic solid, alpha-Zr(IV) phosphate (alpha-Zr(HPO4)2.H2O, abbreviated as alpha-ZrP) served as an excellent host for these studies, and the binding has been carried out under benign conditions (aqueous solutions at room temperature and neutral pH). These novel nanobiocomposite materials provide a simple method for the binding of DNA to negatively charged solids, and such approaches aid in engineering more effective synthetic materials for gene-delivery, RNA-delivery and drug delivery applications.
Advanced materials can be defined in numerous ways; the broadest definition is to refer to all materials that represent advances over the traditional materials that have been used for hundreds or even thousands of years. From this perspective advanced materials refer to all new materials and modifications to existing materials to obtain superior performance in one or more characteristics that are critical for the application under consideration. A more insightful and focused approach to advanced materials is to consider materials that are early in their product and/or technology lifecycle. In other words, there is significant room for growth in terms of the improvement of the performance characteristics (technology lifecycle) and their product lifecycle. The book presents new and important research in the field.
Rational Design of Enzyme-Nanomaterials, the new volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in rational design of enzyme-nanomaterials, and includes sections on such topics as conjugation of enzymes and dextran-aldehyde polymers, improved activity of enzymes bound to titanate nanosheet, nano-layered 'stable-on-the-table' biocatalysts and nanoparticle-based enzyme sensors. - Continues the legacy of this premier serial with quality chapters authored by leaders in the field - Covers research methods in rational design of enzyme-nanomaterials - Contains sections on such topics as conjugation of enzymes and dextran-aldehyde polymers, improved activity of enzymes bound to titanate nanosheet, nano-layered 'stable-on-the-table' biocatalysts, and nanoparticle-based enzyme sensors
Enzymes Conjugated to Graphene, Volume 609 in the Methods in Enzymology series, highlights new advances in the field, with this new volume presenting interesting chapters on Enzyme immobilization, Detection of Urea, Enzyme immobilization Enzyme immobilization, PAMAM dendrimer modified reduced graphene oxide post functionalized by horseradish peroxidase for biosensing H2O2, HRP immobilized for LEV detection, Enzyme immobilization, Graphene biocatalysts, Enzyme immobilization, Interactions, Enzyme immobilization, GQD, Enzyme Immobilization, and Enzyme immobilization on functionalized graphene oxide nanosheets. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods of Enzymology series - Updated release includes the latest information on the enzymes conjugated to graphene
This book describes the fundamental concepts, the latest developments and the outlook of the field of nanozymes (i.e., the catalytic nanomaterials with enzymatic characteristics). As one of today’s most exciting fields, nanozyme research lies at the interface of chemistry, biology, materials science and nanotechnology. Each of the book’s six chapters explores advances in nanozymes. Following an introduction to the rise of nanozymes research in the course of research on natural enzymes and artificial enzymes in Chapter 1, Chapters 2 through 5 discuss different nanomaterials used to mimic various natural enzymes, from carbon-based and metal-based nanomaterials to metal oxide-based nanomaterials and other nanomaterials. In each of these chapters, the nanomaterials’ enzyme mimetic activities, catalytic mechanisms and key applications are covered. In closing, Chapter 6 addresses the current challenges and outlines further directions for nanozymes. Presenting extensive information on nanozymes and supplemented with a wealth of color illustrations and tables, the book offers an ideal guide for readers from disparate areas, including analytical chemistry, materials science, nanoscience and nanotechnology, biomedical and clinical engineering, environmental science and engineering, green chemistry, and novel catalysis.
There is a continuous exchange of ideas taking place at the border of the biological and physical sciences in many areas of nanoscience. Nanotechnology uses biomimetic or bio-inspired processes to produce nanosized materials for applications in biology and other fields. In return, the fruits of nanotechnology are applied to expanding areas of biome
Modern techniques to produce nanoparticles, nanomaterials, and nanocomposites are based on approaches that frequently involve high costs, inefficiencies, and negative environmental impacts. As such, there has been a real drive to develop and apply approaches that are more efficient and benign. The Handbook of Greener Synthesis of Nanomaterials and Compounds provides a comprehensive review of developments in this field, combining foundational green and nano-chemistry with the key information researchers need to assess, select and apply the most appropriate green synthesis approaches to their own work.Volume 1: Fundamental Principles and Methods provides a clear introduction to the fundamentals of green synthesis that places synthesis in the context of green chemistry. Beginning with a discussion of key greener physical and chemical methods for synthesis, including ultrasound, microwave and mechanochemistry methods, the book goes on to explore biological methods, including biosynthesis, green nanoformation, and virus-assisted methods. - Discusses synthesis in the context of the principles of green chemistry - Highlights both traditional and innovative technologies for the synthesis of nanomaterials and related composites under green chemistry conditions - Reflects on the current and potential applications of natural products chemistry in synthesis
Biomateriomics is the holistic study of biological material systems. While such systems are undoubtedly complex, we frequently encounter similar components -- universal building blocks and hierarchical structure motifs -- which result in a diverse set of functionalities. Similar to the way music or language arises from a limited set of music notes and words, we exploit the relationships between form and function in a meaningful way by recognizing the similarities between Beethoven and bone, or Shakespeare and silk. Through the investigation of material properties, examining fundamental links between processes, structures, and properties at multiple scales and their interactions, materiomics explains system functionality from the level of building blocks. Biomateriomics specifically focuses the analysis of the role of materials in the context of biological processes, the transfer of biological material principles towards biomimetic and bioinspired applications, and the study of interfaces between living and non-living systems. The challenges of biological materials are vast, but the convergence of biology, mathematics and engineering as well as computational and experimental techniques have resulted in the toolset necessary to describe complex material systems, from nano to macro. Applying biomateriomics can unlock Nature’s secret to high performance materials such as spider silk, bone, and nacre, and elucidate the progression and diagnosis or the treatment of diseases. Similarly, it contributes to develop a de novo understanding of biological material processes and to the potential of exploiting novel concepts in innovation, material synthesis and design.
A review of innovative tools for creative nucleic acid chemists that open the door to novel probes and therapeutic agents Nucleic acids continue to gain importance as novel diagnostic and therapeutic agents. With contributions from noted scientists and scholars, Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives is a practical reference that includes a wide range of approaches for the synthesis of designer nucleic acids and their derivatives. The book covers enzymatic (including chemo-enzymatic) methods, with a focus on the synthesis and incorporation of modified nucleosides. The authors also offer a review of innovative approaches for the non-enzymatic chemical synthesis of nucleic acids and their analogs and derivatives, highlighting especially challenging species. The book offers a concise review of the methods that prepare novel and heavily modified polynucleotides in sufficient amount and purity for most clinical and research applications. This important book: -Presents a timely and topical guide to the synthesis of designer nucleic acids and their derivatives -Addresses the growing market for nucleotide-derived pharmaceuticals used as anti-infectives and chemotherapeutic agents, as well as fungicides and other agrochemicals. -Covers novel methods and the most recent trends in the field -Contains contributions from an international panel of noted scientistics Written for biochemists, medicinal chemists, natural products chemists, organic chemists, and biotechnologists, Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives is a practice-oriented guide that reviews innovative methods for the enzymatic as well as non-enzymatic synthesis of nucleic acid species.