Download Free Novel Colloidal Forming Of Ceramics Book in PDF and EPUB Free Download. You can read online Novel Colloidal Forming Of Ceramics and write the review.

"Novel Colloidal Forming of Ceramics” discusses several new near-net-shape techniques for fabricating highly reliable, high-performance ceramic parts. These techniques combine injection molding and the colloidal forming process. The book not only introduces the basic theoretical development and applications of the colloidal injection molding of ceramics, but also covers tape casting technology, the reliability of the product, and the colloidal injection molding of Si3N4 and SiC, as well as the low-toxicity system. The book is intended for researchers and graduates in materials science and engineering. Mr. Yong Huang and Dr. Jinlong Yang are both professors at the Department of Materials Science and Engineering, Tsinghua University, China.
This book discusses several new, near-net-shape techniques for fabricating highly reliable, high-performance, complex ceramic parts. In the context of materials design, the creation of high-performance ceramic products of desired shapes has led to the need for new ceramic forming processes. The near-net-shape techniques combine both injection-molding and colloidal-forming processes. Reviewing and summarizing the research and latest advances, the book is divided into 6 parts: (1) the basic theory, development, and application of the colloidal injection molding of ceramics; (2) the tape casting technology; (3) the reliability of the product; (4) the colloidal injection molding of Si3N4 and SiC; (5) low-toxicity systems; and (6) the novel in-situ coagulation casting of ceramic suspensions via controlled release of high-valence counter ions and dispersant removal. It is intended for researchers and graduates in materials science and engineering.
A two-volume reference set for all ceramicists, both in research and working in industry The only definitive reference covering the entire field of advanced ceramics from fundamental science and processing to application Contributions from over 50 leading researchers from around the world This new Handbook will be an essential resource for ceramicists. It includes contributions from leading researchers around the world, and includes sections on: Basic Science of Advanced Ceramic, Functional Ceramics (electro-ceramics and optoelectro-ceramics) and engineering ceramics.Contributions from over 50 leading researchers from around the world
Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.
Suspension Plasma Spray Coating of Advanced Ceramics presents the significance of suspension plasma spray coating of ceramics for thermal barrier applications. It covers suspension formation and optimization in different oxide and non-oxide mixtures and ceramic matrix composites (CMC) of sub-micron and nanosized powders. Enabling readers to understand the importance of thermally inert and insulating ceramic coatings on metals and alloys, the book explains how to improve their utilization in applications, such as turbine blades or diesel engines, gas turbines, and coating methods. This book also discusses advanced topics on nanomaterials coatings in monolithic or composite forms as thermal barriers through organic and non-organic based suspensions using high energy plasma spray methods. Features: Presents significant thermal barrier properties using high energy plasma spray methods. Explores advanced surface modification techniques. Covers monolithic, composite, and solid solution ceramics coating. Discusses high precision coating methods. The book will be useful for professional engineers working in surface modification and researchers studying materials science and engineering, corrosion, and abrasion.
Many of the properties critical to the engineering applications of ceramics are strongly dependent on their microstructure which, in turn, is dependent on the processing methods used to produce the ceramic material. Ceramic Processing, Second Edition provides a comprehensive treatment of the principles and practical methods used in producing ceramics with controlled microstructure. Covering the main steps in the production of ceramics from powders, the book also provides succinct coverage of other methods for fabricating ceramics, such as sol−gel processing, reaction bonding, chemical vapor deposition and polymer pyrolysis. While maintaining the objectives of the successful first edition, this new edition has been revised and updated to include recent developments and expanded to feature new chapters on additives used in ceramic processing; rheological properties of suspensions, slurries, and pastes; granulation, mixing, and packing of particles; and sintering theory and principles. Intended as a textbook for undergraduate and graduate courses in ceramic processing, the book also provides an indispensable resource for research and development engineers in industry who are involved in the production of ceramics or who would like to develop a background in the processing of ceramics.
Surface-Functionalized Ceramics Focused coverage of making and using functional ceramic materials for a wide variety of scientific and technical applications Surface-Functionalized Ceramics provides a comprehensive overview of surface functionalization approaches for ceramic materials, including alumina, zirconia, titania, and silica, and their uses as sensors, chemical, and biological probes, chromatographic supports for (bio)molecule purification and analysis, and adsorbents for toxic substances and pollutants. Overall, the text provides a broad picture of the enormous possibilities offered by surface functionalization and addresses the current challenges regarding surface analysis, characterization, and stability. As a well-rounded resource, the text points out opportunities of surface-functionalized ceramics, their issues such as achieving surface stability and complex analysis, and how to counter them. Edited by two experts in the field of advanced materials surfaces, Surface-Functionalized Ceramics covers topics such as: Processing methods for advanced ceramics, surface modification of ceramic materials, and methods for electrokinetic surface characteristics Surface imaging and chemical surface analysis using atomic force microscopy Surface chemical analysis and ceramic-enhanced analytics Biological and living matter-surface interactions including protein adsorption mechanisms as well as bacteria behavior in terms of biofilm formation and prevention for antibacterial applications Mesoporous silica and organosilica biosensors for water quality and environmental monitoring, plus ceramic-based adsorbents in bioproduct recovery and purification For professionals, researchers, and academics in the fields of materials science, biotechnology, biotechnological industry, environmental sciences, and ceramics industry, Surface-Functionalized Ceramics is a one-stop reference on the subject that provides different approaches to obtain surfaces of ceramic materials that perform desired functions.
Ein umfassendes Referenzwerk für Chemiker und Industriefachleute zum Thema Nanopartikel Nanopartikel aus Metalloxid sind ein wesentlicher Bestandteil zahlreicher natürlicher und technologischer Prozesse ? von der Mineralumwandlung bis zur Elektronik. Darüber hinaus kommen Metalloxid-Nanopartikel in Pulverform im Maschinenbau, in der Elektronik und der Energietechnik zum Einsatz. Das Werk Metal Oxide Nanoparticles: Formation, Functional Properties and Interfaces stellt die wichtigsten Synthese- und Formulierungsansätze bei der Nutzung von Metalloxid-Nanopartikeln als Funktionsmaterialien vor. Es werden die üblichen Verarbeitungswege erklärt und die physikalischen und chemischen Eigenschaften der Partikel mithilfe von umfassenden und ergänzenden Charakterisierungsmethoden bewertet. Dieses Werk kann als Einführung in die Formulierung von Nanopartikeln, ihre Grenzflächenchemie und ihre funktionellen Eigenschaften im Nanobereich genutzt werden. Darüber hinaus dient es zum vertiefenden Verständnis, denn das Buch enthält detaillierte Angaben zu fortschrittlichen Methoden bei der physikalischen, chemischen, Oberflächen- und Grenzflächencharakterisierung von Metalloxid-Nanopartikeln in Pulvern und Dispersionen. *Erläuterung der Anwendung von Metalloxid-Nanopartikeln und der wirtschaftlichen Auswirkungen *Betrachtung der Partikelsynthese, einschließlich der Grundsätze ausgewählter Bottom-up-Strategien *Untersuchung der Formulierung von Nanopartikeln mit einer Auswahl von Verarbeitungs- und Anwendungswegen *Diskussion der Bedeutung von Partikeloberflächen und -grenzflächen für Strukturbildung, Stabilität und funktionelle Materialeigenschaften *Betrachtung der Charakterisierung von Metalloxid-Nanopartikeln auf verschiedenen Längenskalen In diesem Buch finden Forscher im akademischen Bereich, Chemiker in der Industrie und Doktoranden wichtige Erkenntnisse über die Synthese, Eigenschaften und Anwendungen von Metalloxid-Nanopartikeln.
This book offers a timely yet comprehensive snapshot of innovative research and developments at the interface between manufacturing, materials and mechanical engineering, and quality assurance. It covers a wide range of manufacturing processes, such as cutting, grinding, assembly, and coatings, including ultrasonic treatment, molding, radial-isostatic compression, ionic-plasma deposition, volumetric vibration treatment, and wear resistance. It also highlights the advantages of augmented reality, RFID technology, reverse engineering, optimization, heat and mass transfer, energy management, quality inspection, and environmental impact. Based on selected papers presented at the Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2020), held in Odessa, Ukraine, on September 8–11, 2020, this book offers a timely overview and extensive information on trends and technologies in production planning, design engineering, advanced materials, machining processes, process engineering, and quality assurance. It is also intended to facilitate communication and collaboration between different groups working on similar topics and offer a bridge between academic and industrial researchers.
In spite of the apparent simplicity of silica's composition and structure, scientists are still investigating fundamental questions regarding the formation, constitution, and behavior of colloidal silica systems. Colloidal Silica: Fundamentals and Applications introduces new information on colloid science related to silica chemistry as well