Download Free Novel Applications Of Bipolar Single Valued Neutrosophic Competition Graphs Book in PDF and EPUB Free Download. You can read online Novel Applications Of Bipolar Single Valued Neutrosophic Competition Graphs and write the review.

Bipolar single-valued neutrosophic models are the generalization of bipolar fuzzy models. We rst introduce the concept of bipolar single-valued neutrosophic competition graphs. We then, discuss some important propositions related to bipolar single-valued neutrosophic competition graphs. We de ne bipolar single-valued neutrosophic economic competition graphs and m-step bipolar single-valued neutrosophic economic competition graphs. Further, we describe applications of bipolar single-valued neutrosophic competition graphs in organizational designations and brands competition. Finally, we present our improved methods by algorithms.
This book addresses single-valued neutrosophic graphs and their applications. In addition, it introduces readers to a number of central concepts, including certain types of single-valued neutrosophic graphs, energy of single-valued neutrosophic graphs, bipolar single-valued neutrosophic planar graphs, isomorphism of intuitionistic single-valued neutrosophic soft graphs, and single-valued neutrosophic soft rough graphs. Divided into eight chapters, the book seeks to remedy the lack of a mathematical approach to indeterminate and inconsistent information. Chap. 1 presents a concise review of single-valued neutrosophic sets, while Chap. 2 explains the notion of neutrosophic graph structures and explores selected properties of neutrosophic graph structures. Chap. 3 discusses specific bipolar neutrosophic graphs. Chap. 4 highlights the concept of interval-valued neutrosophic graphs, while Chap. 5 presents certain notions concerning interval-valued neutrosophic graph structures. Chap. 6 addresses the concepts of rough neutrosophic digraphs and neutrosophic rough digraphs. Chap. 7 focuses on the concepts of neutrosophic soft graphs and intuitionistic neutrosophic soft graphs, before Chap. 8 rounds out the book by considering neutrosophic soft rough graphs.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This book describes a set of hybrid fuzzy models showing how to use them to deal with incomplete and/or vague information in different kind of decision-making problems. Based on the authors’ research, it offers a concise introduction to important models, ranging from rough fuzzy digraphs and intuitionistic fuzzy rough models to bipolar fuzzy soft graphs and neutrosophic graphs, explaining how to construct them. For each method, applications to different multi-attribute, multi-criteria decision-making problems, are presented and discussed. The book, which addresses computer scientists, mathematicians, and social scientists, is intended as concise yet complete guide to basic tools for constructing hybrid intelligent models for dealing with some interesting real-world problems. It is also expected to stimulate readers’ creativity thus offering a source of inspiration for future research.
Graph theory is an important area of applied mathematics with a broad spectrum of applications in many fields. This book results from aSpecialIssue in the journal Mathematics entitled “Graph-Theoretic Problems and Their New Applications”. It contains 20 articles covering a broad spectrum of graph-theoretic works that were selected from 151 submitted papers after a thorough refereeing process. Among others, it includes a deep survey on mixed graphs and their use for solutions ti scheduling problems. Other subjects include topological indices, domination numbers of graphs, domination games, contraction mappings, and neutrosophic graphs. Several applications of graph theory are discussed, e.g., the use of graph theory in the context of molecular processes.
We first introduce the concept of interval-valued neutrosophic competition graphs. We then discuss certain types, including kcompetition interval-valued neutrosophic graphs, p-competition intervalvalued neutrosophic graphs and m-step interval-valued neutrosophic competition graphs. Moreover, we present the concept of m-step intervalvalued neutrosophic neighbourhood graphs.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. In this issue: On Neutrosophic Crisp Sets and Neutrosophic Crisp Mathematical Morphology, New Results on Pythagorean Neutrosophic Open Sets in Pythagorean Neutrosophic Topological Spaces, Comparative Mathematical Model for Predicting of Financial Loans Default using Altman Z-Score and Neutrosophic AHP Methods.
Bipolar neutrosophic set(BNS) is a generalization of bipolar fuzzy set and neutrosophic set that can describe the uncertain information from both positive and negative perspectives. In this contribution, we study the multi-attribute decision making methods based on the distance measure under the uncertain information which the attribute weights are incompletely known or completely unknown.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Parameter Reduction of Neutrosophic Soft Sets and Their Applications, Geometric Programming (NGP) Problems Subject to (⋁,.) Operator; the Minimum Solution, Ngpr Homeomorphism in Neutrosophic Topological Spaces, Generalized Neutrosophic Separation Axioms in Neutrosophic Soft Topological Spaces.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc