Download Free Nonstandard Methods In Fixed Point Theory Book in PDF and EPUB Free Download. You can read online Nonstandard Methods In Fixed Point Theory and write the review.

A unified account of the major new developments inspired by Maurey's application of Banach space ultraproducts to the fixed point theory for non-expansive mappings is given in this text. The first third of the book is devoted to laying a careful foundation for the actual fixed point theoretic results which follow. Set theoretic and Banach space ultraproducts constructions are studied in detail in the second part of the book, while the remainder of the book gives an introduction to the classical fixed point theory in addition to a discussion of normal structure. This is the first book which studies classical fixed point theory for non-expansive maps in the view of non-standard methods.
In the early 1960s, by using techniques from the model theory of first-order logic, Robinson gave a rigorous formulation and extension of Leibniz'' infinitesimal calculus. Since then, the methodology has found applications in a wide spectrum of areas in mathematics, with particular success in the probability theory and functional analysis. In the latter, fruitful results were produced with Luxemburg''s invention of the nonstandard hull construction. However, there is still no publication of a coherent and self-contained treatment of functional analysis using methods from nonstandard analysis. This publication aims to fill this gap.
Diese Einfuhrung in das Gebiet der metrischen Raume richtet sich in erster Linie nicht an Spezialisten, sondern an Anwender der Methode aus den verschiedensten Bereichen der Naturwissenschaften. Besonders ausfuhrlich und anschaulich werden die Grundlagen von metrischen Raumen und Banach-Raumen erklart, Anhange enthalten Informationen zu verschiedenen Schlusselkonzepten der Mengentheorie (Zornsches Lemma, Tychonov-Theorem, transfinite Induktion usw.). Die hinteren Kapitel des Buches beschaftigen sich mit fortgeschritteneren Themen.
What is clear and easy to grasp attracts us; complications deter David Hilbert The material presented in this volume is based on discussions conducted in peri odically held seminars by the Nonlinear Functional Analysis research group of the University of Seville. This book is mainly addressed to those working or aspiring to work in the field of measures of noncompactness and metric fixed point theory. Special em phasis is made on the results in metric fixed point theory which were derived from geometric coefficients defined by means of measures of noncompactness and on the relationships between nonlinear operators which are contractive for different measures. Several topics in these notes can be found either in texts on measures of noncompactness (see [AKPRSj, [BG]) or in books on metric fixed point theory (see [GK1], [Sm], [Z]). Many other topics have come from papers where the authors of this volume have published the results of their research over the last ten years. However, as in any work of this type, an effort has been made to revise many proofs and to place many others in a correct setting. Our research was made possible by partial support of the D.G.I.C.y'T. and the Junta de Andalucia.
Metric fixed point theory encompasses the branch of fixed point theory which metric conditions on the underlying space and/or on the mappings play a fundamental role. In some sense the theory is a far-reaching outgrowth of Banach's contraction mapping principle. A natural extension of the study of contractions is the limiting case when the Lipschitz constant is allowed to equal one. Such mappings are called nonexpansive. Nonexpansive mappings arise in a variety of natural ways, for example in the study of holomorphic mappings and hyperconvex metric spaces. Because most of the spaces studied in analysis share many algebraic and topological properties as well as metric properties, there is no clear line separating metric fixed point theory from the topological or set-theoretic branch of the theory. Also, because of its metric underpinnings, metric fixed point theory has provided the motivation for the study of many geometric properties of Banach spaces. The contents of this Handbook reflect all of these facts. The purpose of the Handbook is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The goal is to provide information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers.
The theory of Fixed Points is one of the most powerful tools of modern mathematics. This book contains a clear, detailed and well-organized presentation of the major results, together with an entertaining set of historical notes and an extensive bibliography describing further developments and applications. From the reviews: "I recommend this excellent volume on fixed point theory to anyone interested in this core subject of nonlinear analysis." --MATHEMATICAL REVIEWS
The purpose of this contributed volume is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The book presents information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers. Key topics covered include Banach contraction theorem, hyperconvex metric spaces, modular function spaces, fixed point theory in ordered sets, topological fixed point theory for set-valued maps, coincidence theorems, Lefschetz and Nielsen theories, systems of nonlinear inequalities, iterative methods for fixed point problems, and the Ekeland’s variational principle.
The equations of mathematical physics are the mathematical models of the large class of phenomenon of physics, chemistry, biology, economics, etc. In Sequential Models of Mathematical Physics, the author considers the justification of the process of constructing mathematical models. The book seeks to determine the classic, generalized and sequential solutions, the relationship between these solutions, its direct physical sense, the methods of its practical finding, and its existence. Features Describes a sequential method based on the construction of space completion, as well as its applications in number theory, the theory of distributions, the theory of extremum, and mathematical physics Presentation of the material is carried out on the simplest example of a one-dimensional stationary heat transfer process; all necessary concepts and constructions are introduced and illustrated with elementary examples, which makes the material accessible to a wide area of readers The solution of a specific mathematical problem is obtained as a result of the joint application of methods and concepts from completely different mathematical directions
Metric Fixed Point Theory has proved a flourishing area of research for many mathematicians. This book aims to offer the mathematical community an accessible, self-contained account which can be used as an introduction to the subject and its development. It will be understandable to a wide audience, including non-specialists, and provide a source of examples, references and new approaches for those currently working in the subject.
This book is an introduction to constructive mathematics with an emphasis on techniques and results obtained in the last twenty years. The text covers fundamental theory of the real line and metric spaces, focusing on locatedness in normed spaces and with associated results about operators and their adjoints on a Hilbert space. The first appendix gathers together some basic notions about sets and orders, the second gives the axioms for intuitionistic logic. No background in intuitionistic logic or constructive analysis is needed in order to read the book, but some familiarity with the classical theories of metric, normed and Hilbert spaces is necessary.