Download Free Nonsmooth Differential Geometry An Approach Tailored For Spaces With Ricci Curvature Bounded From Below Book in PDF and EPUB Free Download. You can read online Nonsmooth Differential Geometry An Approach Tailored For Spaces With Ricci Curvature Bounded From Below and write the review.

The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.
This book provides an introduction to some aspects of the flourishing field of nonsmooth geometric analysis. In particular, a quite detailed account of the first-order structure of general metric measure spaces is presented, and the reader is introduced to the second-order calculus on spaces – known as RCD spaces – satisfying a synthetic lower Ricci curvature bound. Examples of the main topics covered include notions of Sobolev space on abstract metric measure spaces; normed modules, which constitute a convenient technical tool for the introduction of a robust differential structure in the nonsmooth setting; first-order differential operators and the corresponding functional spaces; the theory of heat flow and its regularizing properties, within the general framework of “infinitesimally Hilbertian” metric measure spaces; the RCD condition and its effects on the behavior of heat flow; and second-order calculus on RCD spaces. The book is mainly intended for young researchers seeking a comprehensive and fairly self-contained introduction to this active research field. The only prerequisites are a basic knowledge of functional analysis, measure theory, and Riemannian geometry.
In this paper the author studies elliptic PDEs on compact Gromov-Hausdorff limit spaces of Riemannian manifolds with lower Ricci curvature bounds. In particular the author establishes continuities of geometric quantities, which include solutions of Poisson's equations, eigenvalues of Schrödinger operators, generalized Yamabe constants and eigenvalues of the Hodge Laplacian, with respect to the Gromov-Hausdorff topology. The author applies these to the study of second-order differential calculus on such limit spaces.
The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.
In the present work the author generalizes the construction of monopole Floer homology due to Kronheimer and Mrowka to the case of a gradient flow with Morse-Bott singularities. Focusing then on the special case of a three-manifold equipped equipped with a structure which is isomorphic to its conjugate, the author defines the counterpart in this context of Manolescu's recent Pin(2)-equivariant Seiberg-Witten-Floer homology. In particular, the author provides an alternative approach to his disproof of the celebrated Triangulation conjecture.
The study of finite subgroups of a simple algebraic group $G$ reduces in a sense to those which are almost simple. If an almost simple subgroup of $G$ has a socle which is not isomorphic to a group of Lie type in the underlying characteristic of $G$, then the subgroup is called non-generic. This paper considers non-generic subgroups of simple algebraic groups of exceptional type in arbitrary characteristic.
In this paper, the authors provide a complete theory of Diophantine approximation in the limit set of a group acting on a Gromov hyperbolic metric space. This summarizes and completes a long line of results by many authors, from Patterson's classic 1976 paper to more recent results of Hersonsky and Paulin (2002, 2004, 2007). The authors consider concrete examples of situations which have not been considered before. These include geometrically infinite Kleinian groups, geometrically finite Kleinian groups where the approximating point is not a fixed point of any element of the group, and groups acting on infinite-dimensional hyperbolic space. Moreover, in addition to providing much greater generality than any prior work of which the authors are aware, the results also give new insight into the nature of the connection between Diophantine approximation and the geometry of the limit set within which it takes place. Two results are also contained here which are purely geometric: a generalization of a theorem of Bishop and Jones (1997) to Gromov hyperbolic metric spaces, and a proof that the uniformly radial limit set of a group acting on a proper geodesic Gromov hyperbolic metric space has zero Patterson–Sullivan measure unless the group is quasiconvex-cocompact. The latter is an application of a Diophantine theorem.
The authors study noncompact surfaces evolving by mean curvature flow (mcf). For an open set of initial data that are $C^3$-close to round, but without assuming rotational symmetry or positive mean curvature, the authors show that mcf solutions become singular in finite time by forming neckpinches, and they obtain detailed asymptotics of that singularity formation. The results show in a precise way that mcf solutions become asymptotically rotationally symmetric near a neckpinch singularity.
The authors provide a complete classification of globally generated vector bundles with first Chern class $c_1 \leq 5$ one the projective plane and with $c_1 \leq 4$ on the projective $n$-space for $n \geq 3$. This reproves and extends, in a systematic manner, previous results obtained for $c_1 \leq 2$ by Sierra and Ugaglia [J. Pure Appl. Algebra 213 (2009), 2141-2146], and for $c_1 = 3$ by Anghel and Manolache [Math. Nachr. 286 (2013), 1407-1423] and, independently, by Sierra and Ugaglia [J. Pure Appl. Algebra 218 (2014), 174-180]. It turns out that the case $c_1 = 4$ is much more involved than the previous cases, especially on the projective 3-space. Among the bundles appearing in our classification one can find the Sasakura rank 3 vector bundle on the projective 4-space (conveniently twisted). The authors also propose a conjecture concerning the classification of globally generated vector bundles with $c_1 \leq n - 1$ on the projective $n$-space. They verify the conjecture for $n \leq 5$.
Let X be an abstract not necessarily compact orientable CR manifold of dimension 2n−1, n⩾2, and let Lk be the k-th tensor power of a CR complex line bundle L over X. Given q∈{0,1,…,n−1}, let □(q)b,k be the Gaffney extension of Kohn Laplacian for (0,q) forms with values in Lk. For λ≥0, let Π(q)k,≤λ:=E((−∞,λ]), where E denotes the spectral measure of □(q)b,k. In this work, the author proves that Π(q)k,≤k−N0F∗k, FkΠ(q)k,≤k−N0F∗k, N0≥1, admit asymptotic expansions with respect to k on the non-degenerate part of the characteristic manifold of □(q)b,k, where Fk is some kind of microlocal cut-off function. Moreover, we show that FkΠ(q)k,≤0F∗k admits a full asymptotic expansion with respect to k if □(q)b,k has small spectral gap property with respect to Fk and Π(q)k,≤0 is k-negligible away the diagonal with respect to Fk. By using these asymptotics, the authors establish almost Kodaira embedding theorems on CR manifolds and Kodaira embedding theorems on CR manifolds with transversal CR S1 action.