Download Free Nonperturbative Quantum Field Theory And The Structure Of Matter Book in PDF and EPUB Free Download. You can read online Nonperturbative Quantum Field Theory And The Structure Of Matter and write the review.

"This book, which presents a new view of quantum field theory, may serve as a research monograph and an alternative textbook examining topics which are not usually treated in conventional works." "Audience: This volume will appeal to researchers concerned with the foundation of the theory of matter and forces including gravitation. It will also be interesting to those working with quantum field theoretic methods in various disciplines, such as particle physics, nuclear physics, condensed mater physics, and relativity."--Jacket.
During the past 15 years, quantum field theory and classical statistical mechanics have merged into a single field, and the need for nonperturbative methods for the description of critical phenomena in statistical mechanics as well as for problems in elementary particle physics are generally acknowledged. Such methods formed the central theme of the 1987 Cargese Advanced Study Institut. e on "Nonpert. urbat. ive Quantum Field Theory." The use of conformal symmet. ry has been of central interest in recent years, and was a main subject at. t. he ASI. Conformal invariant quantum field theory describes statistical mechanical systems exactly at a critical point, and can be analysed to a remarkable ext. ent. by group t. heoretical methods. Very strong results have been obtained for 2-dimensional systems. Conformal field theory is also the basis of string theory, which offers some hope of providing a unified t. heory of all interactions between elementary particles. Accordingly, a number of lectures and seminars were presented on these two topics. After syst. ematic introductory lectures, conformal field theory on Riemann surfaces, orbifolds, sigma models, and application of loop group theory and Grassmannians were discussed, and some ideas on modular geometry were presented. Other lectures combined' traditional techniques of constructive quant. um field theory with new methods such as the use of index-t. heorems and infinite dimensional (Kac Moody) symmetry groups. The problems encountered in a quantum mechanical description of black holes were discussed in detail.
"This book, which presents a new view of quantum field theory, may serve as a research monograph and an alternative textbook examining topics which are not usually treated in conventional works." "Audience: This volume will appeal to researchers concerned with the foundation of the theory of matter and forces including gravitation. It will also be interesting to those working with quantum field theoretic methods in various disciplines, such as particle physics, nuclear physics, condensed mater physics, and relativity."--Jacket.
Compiled to illustrate the recent history of Quantum Field Theory and its trends, this collection of selected reprints by Jürg Fröhlich, a leading theoretician in the field, is a comprehensive guide of the more mathematical aspects of the subject. Results and methods of the past fifteen years are reviewed. The analytical methods employed are non-perturbative and, for the larger part, mathematically rigorous. Most articles are review articles surveying certain important developments in quantum field theory and guiding the reader towards the original literature.The volume begins with a comprehensive introduction by Jürg Fröhlich.The theory of phase transitions and continuous symmetry breaking is reviewed in the first section. The second section discusses the non-perturbative quantization of topological solitons. The third section is devoted to the study of gauge fields. A paper on the triviality of λϖ4 — theory in four and more dimensions is found in the fourth section, while the fifth contains two articles on “random geometry”. The sixth and final part addresses topics in low-dimensional quantum field theory, including braid statistics, two-dimensional conformal field theory and an application to condensed matter theory.
This is an approachable introduction to the important topics and recent developments in the field of condensed matter physics. First, the general language of quantum field theory is developed in a way appropriate for dealing with systems having a large number of degrees of freedom. This paves the way for a description of the basic processes in such systems. Applications include various aspects of superfluidity and superconductivity, as well as a detailed description of the fractional quantum Hall liquid.
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.
This book is a course in modern quantum field theory as seen through the eyes of a theorist working in condensed matter physics. It contains a gentle introduction to the subject and therefore can be used even by graduate students. The introductory parts include a derivation of the path integral representation, Feynman diagrams and elements of the theory of metals including a discussion of Landau–Fermi liquid theory. In later chapters the discussion gradually turns to more advanced methods used in the theory of strongly correlated systems. The book contains a thorough exposition of such non-perturbative techniques as 1/N-expansion, bosonization (Abelian and non-Abelian), conformal field theory and theory of integrable systems. The book is intended for graduate students, postdoctoral associates and independent researchers working in condensed matter physics.
This is a monograph on geometrical and topological features which arise in quantum field theory. It is well known that when a chiral fermion interacts with a gauge field we have chiral anomaly which corresponds to the fact that divergence of the axial vector current does not vanish. It is observed that this is related to certain topological features associated with the fermion and leads to the realization of the topological origin of fermion number as well as the Berry phase. The role of gauge fields in the quantization procedure has its implications in these topological features of a fermion and helps us to consider a massive fermion as a soliton (skyrrnion). In this formalism chiral anomaly is found to be responsible for mass generation. This has its relevance in electroweak theory where it is observed that weak interaction gauge bosons attain mass topologically. The geometrical feature of a skyrmion also helps us to realize the internal symmetry of hadrons from reflection group. Finally it has been shown that noncommutative geometry where the space time manifold is taken to be X = M x Zz has its relevance in the description of a massive 4 fermion as a skyrmion when the discrete space is considered as the internal space and the symmetry breaking leads to chiral anomaly. In chap. l preliminary mathematical formulations related to the spinor structure have been discussed. In chap.