Download Free Nonperturbative Methods In Quantum Field Theory Book in PDF and EPUB Free Download. You can read online Nonperturbative Methods In Quantum Field Theory and write the review.

During the past 15 years, quantum field theory and classical statistical mechanics have merged into a single field, and the need for nonperturbative methods for the description of critical phenomena in statistical mechanics as well as for problems in elementary particle physics are generally acknowledged. Such methods formed the central theme of the 1987 Cargese Advanced Study Institut. e on "Nonpert. urbat. ive Quantum Field Theory." The use of conformal symmet. ry has been of central interest in recent years, and was a main subject at. t. he ASI. Conformal invariant quantum field theory describes statistical mechanical systems exactly at a critical point, and can be analysed to a remarkable ext. ent. by group t. heoretical methods. Very strong results have been obtained for 2-dimensional systems. Conformal field theory is also the basis of string theory, which offers some hope of providing a unified t. heory of all interactions between elementary particles. Accordingly, a number of lectures and seminars were presented on these two topics. After syst. ematic introductory lectures, conformal field theory on Riemann surfaces, orbifolds, sigma models, and application of loop group theory and Grassmannians were discussed, and some ideas on modular geometry were presented. Other lectures combined' traditional techniques of constructive quant. um field theory with new methods such as the use of index-t. heorems and infinite dimensional (Kac Moody) symmetry groups. The problems encountered in a quantum mechanical description of black holes were discussed in detail.
Providing a new perspective on quantum field theory, this book is useful for graduate students and researchers within and outside the field. It describes non-perturbative methods, and explores two-dimensional and four-dimensional gauge dynamics using those methods. Applications are thoroughly described.
Compiled to illustrate the recent history of Quantum Field Theory and its trends, this collection of selected reprints by Jürg Fröhlich, a leading theoretician in the field, is a comprehensive guide of the more mathematical aspects of the subject. Results and methods of the past fifteen years are reviewed. The analytical methods employed are non-perturbative and, for the larger part, mathematically rigorous. Most articles are review articles surveying certain important developments in quantum field theory and guiding the reader towards the original literature.The volume begins with a comprehensive introduction by Jürg Fröhlich.The theory of phase transitions and continuous symmetry breaking is reviewed in the first section. The second section discusses the non-perturbative quantization of topological solitons. The third section is devoted to the study of gauge fields. A paper on the triviality of λϖ4 — theory in four and more dimensions is found in the fourth section, while the fifth contains two articles on “random geometry”. The sixth and final part addresses topics in low-dimensional quantum field theory, including braid statistics, two-dimensional conformal field theory and an application to condensed matter theory.
This highly pedagogical textbook for graduate students in particle, theoretical and mathematical physics, explores advanced topics of quantum field theory. Clearly divided into two parts; the first focuses on instantons with a detailed exposition of instantons in quantum mechanics, supersymmetric quantum mechanics, the large order behavior of perturbation theory, and Yang–Mills theories, before moving on to examine the large N expansion in quantum field theory. The organised presentation style, in addition to detailed mathematical derivations, worked examples and applications throughout, enables students to gain practical experience with the tools necessary to start research. The author includes recent developments on the large order behavior of perturbation theory and on large N instantons, and updates existing treatments of classic topics, to ensure that this is a practical and contemporary guide for students developing their understanding of the intricacies of quantum field theory.
The book discusses fundamental aspects of Quantum Field Theory and of Gauge theories, with attention to mathematical consistency. Basic issues of the standard model of elementary particles (Higgs mechanism and chiral symmetry breaking in quantum Chromodynamics) are treated without relying on the perturbative expansion and on instanton calculus.
In this monograph we apply scattering theory methods to calculations in quantum ?eld theory, with a particular focus on properties of the quantum vacuum. These methods will provide e?cient and reliable solutions to a - riety of problems in quantum ?eld theory. Our approach will also elucidate in a concrete context many of the subtleties of quantum ?eld theory, such as divergences, regularization, and renormalization, by connecting them to more familiar results in quantum mechanics. We will use tools of scattering theory to characterize the spectrum of energyeigenstatesinapotentialbackground,hencethetermspectralmethods. This mode spectrum comprises both discrete bound states and a continuum of scattering states. We develop a powerful formalism that parameterizes the e?ects of the continuum by the density of states, which we compute from scattering data. Summing the zero-point energies of these modes gives the energy of the quantum vacuum, which is one of the central quantities we study.Althoughthemostcommonlystudiedbackgroundpotentialsarisefrom static soliton solutions to the classical equations of motion, these methods are not limited to such cases.
This book contains an edited comprehensive collection of reprints on the subject of the large N limit as applied to a wide spectrum of problems in quantum field theory and statistical mechanics. The topics include (1) Spin Systems; (2) Large N Limit of Gauge Theories; (3) Two-Dimensional QCD; (4) Exact Results on Planar Perturbation Series and the Nature of the 1/N Series; (5) Schwinger-Dyson Equations Approach; (6) QCD Phenomenological Lagrangians and the Large N Limit; (7) Other Approaches to Large N: Eguchi-Kawai Model, Collective Fields and Numerical Methods; (8) Matrix Models; (9) Two-Dimensional Gravity and String Theory.
This primer is a comprehensive collection of analytical and numerical techniques that can be used to extract the non-perturbative physics of quantum field theories. The intriguing connection between Euclidean Quantum Field Theories (QFTs) and statistical mechanics can be used to apply Markov Chain Monte Carlo (MCMC) methods to investigate strongly coupled QFTs. The overwhelming amount of reliable results coming from the field of lattice quantum chromodynamics stands out as an excellent example of MCMC methods in QFTs in action. MCMC methods have revealed the non-perturbative phase structures, symmetry breaking, and bound states of particles in QFTs. The applications also resulted in new outcomes due to cross-fertilization with research areas such as AdS/CFT correspondence in string theory and condensed matter physics. The book is aimed at advanced undergraduate students and graduate students in physics and applied mathematics, and researchers in MCMC simulations and QFTs. At the end of this book the reader will be able to apply the techniques learned to produce more independent and novel research in the field.
This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory. In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.
"This book, which presents a new view of quantum field theory, may serve as a research monograph and an alternative textbook examining topics which are not usually treated in conventional works." "Audience: This volume will appeal to researchers concerned with the foundation of the theory of matter and forces including gravitation. It will also be interesting to those working with quantum field theoretic methods in various disciplines, such as particle physics, nuclear physics, condensed mater physics, and relativity."--Jacket.