Download Free Nonparametric Statistics For Applied Research Book in PDF and EPUB Free Download. You can read online Nonparametric Statistics For Applied Research and write the review.

Nonparametric statistics has probably become the leading methodology for researchers performing data analysis. It is nevertheless true that, whereas these methods have already proved highly effective in other applied areas of knowledge such as biostatistics or social sciences, nonparametric analyses in reliability currently form an interesting area of study that has not yet been fully explored. Applied Nonparametric Statistics in Reliability is focused on the use of modern statistical methods for the estimation of dependability measures of reliability systems that operate under different conditions. The scope of the book includes: smooth estimation of the reliability function and hazard rate of non-repairable systems; study of stochastic processes for modelling the time evolution of systems when imperfect repairs are performed; nonparametric analysis of discrete and continuous time semi-Markov processes; isotonic regression analysis of the structure function of a reliability system, and lifetime regression analysis. Besides the explanation of the mathematical background, several numerical computations or simulations are presented as illustrative examples. The corresponding computer-based methods have been implemented using R and MATLAB®. A concrete modelling scheme is chosen for each practical situation and, in consequence, a nonparametric inference procedure is conducted. Applied Nonparametric Statistics in Reliability will serve the practical needs of scientists (statisticians and engineers) working on applied reliability subjects.
A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.
​​Non-parametric methods are widely used for studying populations that take on a ranked order (such as movie reviews receiving one to four stars). The use of non-parametric methods may be necessary when data have a ranking but no clear numerical interpretation, such as when assessing preferences. In terms of levels of measurement, non-parametric methods result in "ordinal" data. As non-parametric methods make fewer assumptions, their applicability is much wider than the corresponding parametric methods. In particular, they may be applied in situations where less is known about the application in question. Also, due to the reliance on fewer assumptions, non-parametric methods are more robust. Non-parametric methods have many popular applications, and are widely used in research in the fields of the behavioral sciences and biomedicine. This is a textbook on non-parametric statistics for applied research. The authors propose to use a realistic yet mostly fictional situation and series of dialogues to illustrate in detail the statistical processes required to complete data analysis. This book draws on a readers existing elementary knowledge of statistical analyses to broaden his/her research capabilities. The material within the book is covered in such a way that someone with a very limited knowledge of statistics would be able to read and understand the concepts detailed in the text. The “real world” scenario to be presented involves a multidisciplinary team of behavioral, medical, crime analysis, and policy analysis professionals work together to answer specific empirical questions regarding real-world applied problems. The reader is introduced to the team and the data set, and through the course of the text follows the team as they progress through the decision making process of narrowing the data and the research questions to answer the applied problem. In this way, abstract statistical concepts are translated into concrete and specific language. This text uses one data set from which all examples are taken. This is radically different from other statistics books which provide a varied array of examples and data sets. Using only one data set facilitates reader-directed teaching and learning by providing multiple research questions which are integrated rather than using disparate examples and completely unrelated research questions and data.
Probability theory; Statistical inference; Some tests based on the binomial distribution; Contingency tables; Some methods based on ranks; Statistics of the koolmogorov-smirnov type.
“...a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught." –CHOICE This Second Edition presents a practical and understandable approach that enhances and expands the statistical toolset for readers. This book includes: New coverage of the sign test and the Kolmogorov-Smirnov two-sample test in an effort to offer a logical and natural progression to statistical power SPSS® (Version 21) software and updated screen captures to demonstrate how to perform and recognize the steps in the various procedures Data sets and odd-numbered solutions provided in an appendix, and tables of critical values Supplementary material to aid in reader comprehension, which includes: narrated videos and screen animations with step-by-step instructions on how to follow the tests using SPSS; online decision trees to help users determine the needed type of statistical test; and additional solutions not found within the book.
A practical and understandable approach to nonparametric statistics for researchers across diverse areas of study As the importance of nonparametric methods in modern statistics continues to grow, these techniques are being increasingly applied to experimental designs across various fields of study. However, researchers are not always properly equipped with the knowledge to correctly apply these methods. Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach fills a void in the current literature by addressing nonparametric statistics in a manner that is easily accessible for readers with a background in the social, behavioral, biological, and physical sciences. Each chapter follows the same comprehensive format, beginning with a general introduction to the particular topic and a list of main learning objectives. A nonparametric procedure is then presented and accompanied by context-based examples that are outlined in a step-by-step fashion. Next, SPSS® screen captures are used to demonstrate how to perform and recognize the steps in the various procedures. Finally, the authors identify and briefly describe actual examples of corresponding nonparametric tests from diverse fields. Using this organized structure, the book outlines essential skills for the application of nonparametric statistical methods, including how to: Test data for normality and randomness Use the Wilcoxon signed rank test to compare two related samples Apply the Mann-Whitney U test to compare two unrelated samples Compare more than two related samples using the Friedman test Employ the Kruskal-Wallis H test to compare more than two unrelated samples Compare variables of ordinal or dichotomous scales Test for nominal scale data A detailed appendix provides guidance on inputting and analyzing the presented data using SPSS®, and supplemental tables of critical values are provided. In addition, the book's FTP site houses supplemental data sets and solutions for further practice. Extensively classroom tested, Nonparametric Statistics for Non-Statisticians is an ideal book for courses on nonparametric statistics at the upper-undergraduate and graduate levels. It is also an excellent reference for professionals and researchers in the social, behavioral, and health sciences who seek a review of nonparametric methods and relevant applications.
An Introduction to Nonparametric Statistics presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression. Attention is paid to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included. Features Rank-based techniques including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests are presented Tests are inverted to produce estimates and confidence intervals Multivariate tests are explored Techniques reflecting the dependence of a response variable on explanatory variables are presented Density estimation is explored The bootstrap and jackknife are discussed This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, elementary probability, and regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.
A Practical Guide to Implementing Nonparametric and Rank-Based Procedures Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm. The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data. The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.
This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.
This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and make use of Bayesian methods to analyze ranking data. The book bridges the gap between parametric and nonparametric statistics and presents the best practices of the former while enjoying the robustness properties of the latter. This book can be used in a graduate course in nonparametrics, with parts being accessible to senior undergraduates. In addition, the book will be of wide interest to statisticians and researchers in applied fields.