Download Free Nonparametric Monte Carlo Tests And Their Applications Book in PDF and EPUB Free Download. You can read online Nonparametric Monte Carlo Tests And Their Applications and write the review.

A fundamental issue in statistical analysis is testing the fit of a particular probability model to a set of observed data. Monte Carlo approximation to the null distribution of the test provides a convenient and powerful means of testing model fit. Nonparametric Monte Carlo Tests and Their Applications proposes a new Monte Carlo-based methodology to construct this type of approximation when the model is semistructured. When there are no nuisance parameters to be estimated, the nonparametric Monte Carlo test can exactly maintain the significance level, and when nuisance parameters exist, this method can allow the test to asymptotically maintain the level. The author addresses both applied and theoretical aspects of nonparametric Monte Carlo tests. The new methodology has been used for model checking in many fields of statistics, such as multivariate distribution theory, parametric and semiparametric regression models, multivariate regression models, varying-coefficient models with longitudinal data, heteroscedasticity, and homogeneity of covariance matrices. This book will be of interest to both practitioners and researchers investigating goodness-of-fit tests and resampling approximations. Every chapter of the book includes algorithms, simulations, and theoretical deductions. The prerequisites for a full appreciation of the book are a modest knowledge of mathematical statistics and limit theorems in probability/empirical process theory. The less mathematically sophisticated reader will find Chapters 1, 2 and 6 to be a comprehensible introduction on how and where the new method can apply and the rest of the book to be a valuable reference for Monte Carlo test approximation and goodness-of-fit tests. Lixing Zhu is Associate Professor of Statistics at the University of Hong Kong. He is a winner of the Humboldt Research Award at Alexander-von Humboldt Foundation of Germany and an elected Fellow of the Institute of Mathematical Statistics. From the reviews: "These lecture notes discuss several topics in goodness-of-fit testing, a classical area in statistical analysis. ... The mathematical part contains detailed proofs of the theoretical results. Simulation studies illustrate the quality of the Monte Carlo approximation. ... this book constitutes a recommendable contribution to an active area of current research." Winfried Stute for Mathematical Reviews, Issue 2006 "...Overall, this is an interesting book, which gives a nice introduction to this new and specific field of resampling methods." Dongsheng Tu for Biometrics, September 2006
Copulas are mathematical objects that fully capture the dependence structure among random variables and hence offer great flexibility in building multivariate stochastic models. Since their introduction in the early 50's, copulas have gained considerable popularity in several fields of applied mathematics, such as finance, insurance and reliability theory. Today, they represent a well-recognized tool for market and credit models, aggregation of risks, portfolio selection, etc. This book is divided into two main parts: Part I - "Surveys" contains 11 chapters that provide an up-to-date account of essential aspects of copula models. Part II - "Contributions" collects the extended versions of 6 talks selected from papers presented at the workshop in Warsaw.
Monte Carlo approximation to the null distribution of the test provides a convenient means of testing model fit. This book proposes a Monte Carlo-based methodology to construct this type of approximation when the model is semistructured. It addresses both applied and theoretical aspects of nonparametric Monte Carlo tests.
This book offers a new, fairly efficient, and robust alternative to analyzing multivariate data. The analysis of data based on multivariate spatial signs and ranks proceeds very much as does a traditional multivariate analysis relying on the assumption of multivariate normality; the regular L2 norm is just replaced by different L1 norms, observation vectors are replaced by spatial signs and ranks, and so on. A unified methodology starting with the simple one-sample multivariate location problem and proceeding to the general multivariate multiple linear regression case is presented. Companion estimates and tests for scatter matrices are considered as well. The R package MNM is available for computation of the procedures. This monograph provides an up-to-date overview of the theory of multivariate nonparametric methods based on spatial signs and ranks. The classical book by Puri and Sen (1971) uses marginal signs and ranks and different type of L1 norm. The book may serve as a textbook and a general reference for the latest developments in the area. Readers are assumed to have a good knowledge of basic statistical theory as well as matrix theory. Hannu Oja is an academy professor and a professor in biometry in the University of Tampere. He has authored and coauthored numerous research articles in multivariate nonparametrical and robust methods as well as in biostatistics.
Real-life problems are often quite complicated in form and nature and, for centuries, many different mathematical concepts, ideas and tools have been developed to formulate these problems theoretically and then to solve them either exactly or approximately. This book aims to gather a collection of papers dealing with several different problems arising from many disciplines and some modern mathematical approaches to handle them. In this respect, the book offers a wide overview on many of the current trends in Mathematics as valuable formal techniques in capturing and exploiting the complexity involved in real-world situations. Several researchers, colleagues, friends and students of Professor María Luisa Menéndez have contributed to this volume to pay tribute to her and to recognize the diverse contributions she had made to the fields of Mathematics and Statistics and to the profession in general. She had a sweet and strong personality, and instilled great values and work ethics in her students through her dedication to teaching and research. Even though the academic community lost her prematurely, she would continue to provide inspiration to many students and researchers worldwide through her published work.
This account of recent works on weakly dependent, long memory and multifractal processes introduces new dependence measures for studying complex stochastic systems and includes other topics such as the dependence structure of max-stable processes.
Disk contains the library functions and documentation for use with Splus for Windows.
Space, structure, and randomness: these are the three key concepts underlying Georges Matheron’s scientific work. He first encountered them at the beginning of his career when working as a mining engineer, and then they resurfaced in fields ranging from meteorology to microscopy. What could these radically different types of applications possibly have in common? First, in each one only a single realisation of the phenomenon is available for study, but its features repeat themselves in space; second, the sampling pattern is rarely regular, and finally there are problems of change of scale. This volume is divided in three sections on random sets, geostatistics and mathematical morphology. They reflect his professional interests and his search for underlying unity. Some readers may be surprised to find theoretical chapters mixed with applied ones. We have done this deliberately. GM always considered that the distinction between the theory and practice was purely academic. When GM tackled practical problems, he used his skill as a physicist to extract the salient features and to select variables which could be measured meaningfully and whose values could be estimated from the available data. Then he used his outstanding ability as a mathematician to solve the problems neatly and efficiently. It was his capacity to combine a physicist’s intuition with a mathematician’s analytical skills that allowed him to produce new and innovative solutions to difficult problems. The book should appeal to graduate students and researchers working in mathematics, probability, statistics, physics, spatial data analysis, and image analysis. In addition it will be of interest to those who enjoy discovering links between scientific disciplines that seem unrelated at first glance. In writing the book the contributors have tried to put GM’s ideas into perspective. During his working life, GM was a genuinely creative scientist. He developed innovative concepts whose usefulness goes far beyond the confines of the discipline for which they were originally designed. This is why his work remains as pertinent today as it was when it was first written.
Time series play a crucial role in modern economies at all levels of activity and are used by decision makers to plan for a better future. Before publication time series are subject to statistical adjustments and this is the first statistical book to systematically deal with the methods most often applied for such adjustments. Regression-based models are emphasized because of their clarity, ease of application, and superior results. Each topic is illustrated with real case examples. In order to facilitate understanding of their properties and limitations of the methods discussed a real data example is followed throughout the book.
This revised book presents theoretical results relevant to Edgeworth and saddlepoint expansions to densities and distribution functions. It provides examples of their application in some simple and a few complicated settings, along with numerical, as well as asymptotic, assessments of their accuracy. Variants on these expansions, including much of modern likelihood theory, are discussed and applications to lattice distributions are extensively treated.