Download Free Nonlinear Systems And Applications Book in PDF and EPUB Free Download. You can read online Nonlinear Systems And Applications and write the review.

A nonlinear system is a set of nonlinear equations, which may be algebraic, ordinary differential, partial differential, fractional, integral or a combination of these. Especially, nowadays, the term "dynamical system" is used as a synonym of nonlinear systems where the nonlinear equations represent the evolution of a solution over time. So, the notion of dynamical systems arose following the name of equations governing the motion of a system of particles, even though the nonlinear system may have no application to mechanics. Also, from an engineering point of view a nonlinear system may be represented with a feedback loop in which the output of an element is not proportional to its input. Over the last few decades, nonlinear systems have been used to describe a great variety of phenomena, in social and life sciences as well as in physical sciences and engineering. The theory of nonlinear systems has applications to problems of population growth, economics, chemical reactions, celestial mechanics, physiology of nerves, onset of turbulence, regulation of heartbeats, electronic circuits, cryptography, secure communications and many others. Nonlinear dynamical systems, which present chaotic behavior, are of great importance due to their applications in science and engineering. Chaotic systems are nonlinear dynamical systems and maps that are highly sensitive to initial conditions. The sensitivity of initial conditions is usually called the butter'y effect for dynamical systems and maps. So, nowadays the design and analysis of nonlinear systems and especially chaotic systems has gained the interest of the research community due to the fact that many phenomena on financial, physical, biological, chemical, mechanical and engineering systems can be modeled and studied through the perspective of nonlinear dynamics. These nonlinear systems can be modeled by discrete-time or continuous-time mathematical models.This book aims to bridge the gap between the design/analysis and applications, which are the two research stages on the progress of nonlinear systems and also which open up some new directions of real applications, where chaos can be put up to technological use, including secure communication systems, electronic circuits' design, memristors and radar. Finally, this book can serve as an updated and handy reference for university professors, graduate students, laboratory researchers as well as physicists and applied mathematicians who are interested in studying the chaos and its applications through the field of nonlinear systems.
When M. Vidyasagar wrote the first edition of Nonlinear Systems Analysis, most control theorists considered the subject of nonlinear systems a mystery. Since then, advances in the application of differential geometric methods to nonlinear analysis have matured to a stage where every control theorist needs to possess knowledge of the basic techniques because virtually all physical systems are nonlinear in nature. The second edition, now republished in SIAM's Classics in Applied Mathematics series, provides a rigorous mathematical analysis of the behavior of nonlinear control systems under a variety of situations. It develops nonlinear generalizations of a large number of techniques and methods widely used in linear control theory. The book contains three extensive chapters devoted to the key topics of Lyapunov stability, input-output stability, and the treatment of differential geometric control theory. Audience: this text is designed for use at the graduate level in the area of nonlinear systems and as a resource for professional researchers and practitioners working in areas such as robotics, spacecraft control, motor control, and power systems.
Linear, Time-varying Approximations to Nonlinear Dynamical Systems introduces a new technique for analysing and controlling nonlinear systems. This method is general and requires only very mild conditions on the system nonlinearities, setting it apart from other techniques such as those – well-known – based on differential geometry. The authors cover many aspects of nonlinear systems including stability theory, control design and extensions to distributed parameter systems. Many of the classical and modern control design methods which can be applied to linear, time-varying systems can be extended to nonlinear systems by this technique. The implementation of the control is therefore simple and can be done with well-established classical methods. Many aspects of nonlinear systems, such as spectral theory which is important for the generalisation of frequency domain methods, can be approached by this method.
There has been much excitement over the emergence of new mathematical techniques for the analysis and control of nonlinear systems. In addition, great technological advances have bolstered the impact of analytic advances and produced many new problems and applications which are nonlinear in an essential way. This book lays out in a concise mathematical framework the tools and methods of analysis which underlie this diversity of applications.
The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design procedures on the nonlinear control systems are emphasized using MATLAB software.
This book examines control of nonlinear systems. Coverage ranges from mathematical system theory to practical industrial control applications. The author offers web-based videos illustrating some dynamical aspects and case studies in simulation.
The theories of bifurcation, chaos and fractals as well as equilibrium, stability and nonlinear oscillations, are part of the theory of the evolution of solutions of nonlinear equations. A wide range of mathematical tools and ideas are drawn together in the study of these solutions, and the results applied to diverse and countless problems in the natural and social sciences, even philosophy. The text evolves from courses given by the author in the UK and the United States. It introduces the mathematical properties of nonlinear systems, mostly difference and differential equations, as an integrated theory, rather than presenting isolated fashionable topics. Topics are discussed in as concrete a way as possible and worked examples and problems are used to explain, motivate and illustrate the general principles. The essence of these principles, rather than proof or rigour, is emphasized. More advanced parts of the text are denoted by asterisks, and the mathematical prerequisites are limited to knowledge of linear algebra and advanced calculus, thus making it ideally suited to both senior undergraduates and postgraduates from physics, engineering, chemistry, meteorology etc. as well as mathematics.
The purpose of this fantastically useful book is to lay out an overview on possible tools for state reconstruction in nonlinear systems. Here, basic observability notions and observer structures are recalled, together with ingredients for advanced designs on this basis. The problem of state reconstruction in dynamical systems, known as observer problem, is crucial for controlling or even merely monitoring processes. For linear systems, the theory has been well established for several years, so this book attempts to tackle the problem for non-linear systems.
This book collects many helpful techniques for obtaining regularity results for solutions of nonlinear systems of partial differential equations. These are applied in various cases to provide useful examples and relevant results, particularly in such fields as fluid mechanics, solid mechanics, semiconductor theory and game theory.
This book focuses on the latest applications of nonlinear approaches in engineering and addresses a range of scientific problems. Examples focus on issues in automotive technology, including automotive dynamics, control for electric and hybrid vehicles, and autodriver algorithm for autonomous vehicles. Also included are discussions on renewable energy plants, data modeling, driver-aid methods, and low-frequency vibration. Chapters are based on invited contributions from world-class experts who advance the future of engineering by discussing the development of more optimal, accurate, efficient, cost, and energy effective systems. This book is appropriate for researchers, students, and practising engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems. Presents a broad range of practical topics and approaches; Explains approaches to better, safer, and cheaper systems; Emphasises automotive applications, physical meaning, and methodologies.