Download Free Nonlinear Source Separation Book in PDF and EPUB Free Download. You can read online Nonlinear Source Separation and write the review.

This book provides a detailed survey of the methods that were recently developed to handle advanced versions of the blind source separation problem, which involve several types of nonlinear mixtures. Another attractive feature of the book is that it is based on a coherent framework. More precisely, the authors first present a general procedure for developing blind source separation methods. Then, all reported methods are defined with respect to this procedure. This allows the reader not only to more easily follow the description of each method but also to see how these methods relate to one another. The coherence of this book also results from the fact that the same notations are used throughout the chapters for the quantities (source signals and so on) that are used in various methods. Finally, among the quite varied types of processing methods that are presented in this book, a significant part of this description is dedicated to methods based on artificial neural networks, especially recurrent ones, which are currently of high interest to the data analysis and machine learning community in general, beyond the more specific signal processing and blind source separation communities.
The purpose of this lecture book is to present the state of the art in nonlinear blind source separation, in a form appropriate for students, researchers and developers. Source separation deals with the problem of recovering sources that are observed in a mixed condition. When we have little knowledge about the sources and about the mixture process, we speak of blind source separation. Linear blind source separation is a relatively well studied subject, however nonlinear blind source separation is still in a less advanced stage, but has seen several significant developments in the last few years. This publication reviews the main nonlinear separation methods, including the separation of post-nonlinear mixtures, and the MISEP, ensemble learning and kTDSEP methods for generic mixtures. These methods are studied with a significant depth. A historical overview is also presented, mentioning most of the relevant results, on nonlinear blind source separation, that have been presented over the years.
Blind Source Separation intends to report the new results of the efforts on the study of Blind Source Separation (BSS). The book collects novel research ideas and some training in BSS, independent component analysis (ICA), artificial intelligence and signal processing applications. Furthermore, the research results previously scattered in many journals and conferences worldwide are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers, R&D engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms and applications of BSS. Dr. Ganesh R. Naik works at University of Technology, Sydney, Australia; Dr. Wenwu Wang works at University of Surrey, UK.
Edited by the people who were forerunners in creating the field, together with contributions from 34 leading international experts, this handbook provides the definitive reference on Blind Source Separation, giving a broad and comprehensive description of all the core principles and methods, numerical algorithms and major applications in the fields of telecommunications, biomedical engineering and audio, acoustic and speech processing. Going beyond a machine learning perspective, the book reflects recent results in signal processing and numerical analysis, and includes topics such as optimization criteria, mathematical tools, the design of numerical algorithms, convolutive mixtures, and time frequency approaches. This Handbook is an ideal reference for university researchers, R&D engineers and graduates wishing to learn the core principles, methods, algorithms, and applications of Blind Source Separation. - Covers the principles and major techniques and methods in one book - Edited by the pioneers in the field with contributions from 34 of the world's experts - Describes the main existing numerical algorithms and gives practical advice on their design - Covers the latest cutting edge topics: second order methods; algebraic identification of under-determined mixtures, time-frequency methods, Bayesian approaches, blind identification under non negativity approaches, semi-blind methods for communications - Shows the applications of the methods to key application areas such as telecommunications, biomedical engineering, speech, acoustic, audio and music processing, while also giving a general method for developing applications
This is the world’s first edited book on independent component analysis (ICA)-based blind source separation (BSS) of convolutive mixtures of speech. This book brings together a small number of leading researchers to provide tutorial-like and in-depth treatment on major ICA-based BSS topics, with the objective of becoming the definitive source for current, comprehensive, authoritative, and yet accessible treatment.
Audio Signal Processing for Next-Generation Multimedia Communication Systems presents cutting-edge digital signal processing theory and implementation techniques for problems including speech acquisition and enhancement using microphone arrays, new adaptive filtering algorithms, multichannel acoustic echo cancellation, sound source tracking and separation, audio coding, and realistic sound stage reproduction. This book's focus is almost exclusively on the processing, transmission, and presentation of audio and acoustic signals in multimedia communications for telecollaboration where immersive acoustics will play a great role in the near future.
The purpose of this lecture book is to present the state of the art in nonlinear blind source separation, in a form appropriate for students, researchers and developers. Source separation deals with the problem of recovering sources that are observed in a mixed condition. When we have little knowledge about the sources and about the mixture process, we speak of blind source separation. Linear blind source separation is a relatively well studied subject, however nonlinear blind source separation is still in a less advanced stage, but has seen several significant developments in the last few years. This publication reviews the main nonlinear separation methods, including the separation of post-nonlinear mixtures, and the MISEP, ensemble learning and kTDSEP methods for generic mixtures. These methods are studied with a significant depth. A historical overview is also presented, mentioning most of the relevant results, on nonlinear blind source separation, that have been presented over the years.
Technological advancements continue to enhance the field of engineering and have led to progress in branches that include electrical and mechanical engineering. These technologies have allowed for more sophisticated circuits and components while also advancing renewable energy initiatives. With increased growth in these fields, there is a need for a collection of research that details the variety of works being studied in our globalized world. The Handbook of Research on Recent Developments in Electrical and Mechanical Engineering is a pivotal reference source that discusses the latest advancements in these engineering fields. Featuring research on topics such as materials manufacturing, microwave photons, and wireless power transfer, this book is ideally designed for graduate students, researchers, engineers, manufacturing managers, and academicians seeking coverage on the works and experiences achieved in electrical and mechanical engineering.
Separation of Variables and Exact Solutions to Nonlinear PDEs is devoted to describing and applying methods of generalized and functional separation of variables used to find exact solutions of nonlinear partial differential equations (PDEs). It also presents the direct method of symmetry reductions and its more general version. In addition, the authors describe the differential constraint method, which generalizes many other exact methods. The presentation involves numerous examples of utilizing the methods to find exact solutions to specific nonlinear equations of mathematical physics. The equations of heat and mass transfer, wave theory, hydrodynamics, nonlinear optics, combustion theory, chemical technology, biology, and other disciplines are studied. Particular attention is paid to nonlinear equations of a reasonably general form that depend on one or several arbitrary functions. Such equations are the most difficult to analyze. Their exact solutions are of significant practical interest, as they are suitable to assess the accuracy of various approximate analytical and numerical methods. The book contains new material previously unpublished in monographs. It is intended for a broad audience of scientists, engineers, instructors, and students specializing in applied and computational mathematics, theoretical physics, mechanics, control theory, chemical engineering science, and other disciplines. Individual sections of the book and examples are suitable for lecture courses on partial differential equations, equations of mathematical physics, and methods of mathematical physics, for delivering special courses and for practical training.
This book constitutes the refereed proceedings of the 8th International Conference on Independent Component Analysis and Signal Separation, ICA 2009, held in Paraty, Brazil, in March 2009. The 97 revised papers presented were carefully reviewed and selected from 137 submissions. The papers are organized in topical sections on theory, algorithms and architectures, biomedical applications, image processing, speech and audio processing, other applications, as well as a special session on evaluation.