Download Free Nonlinear Schrodinger Equations With Potentials Book in PDF and EPUB Free Download. You can read online Nonlinear Schrodinger Equations With Potentials and write the review.

This monograph presents recent results concerning nonlinear fractional elliptic problems in the whole space. More precisely, it investigates the existence, multiplicity and qualitative properties of solutions for fractional Schrödinger equations by applying suitable variational and topological methods. The book is mainly intended for researchers in pure and applied mathematics, physics, mechanics, and engineering. However, the material will also be useful for students in higher semesters and young researchers, as well as experienced specialists working in the field of nonlocal PDEs. This is the first book to approach fractional nonlinear Schrödinger equations by applying variational and topological methods.
This book explores the diverse types of Schrödinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose–Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phenomena of modulated matter-wave propagation in the network, leading to nonlinear Schrödinger (NLS) equations. Modeling these phenomena is largely based on the reductive perturbation method, and the derived NLS equations are then used to methodically investigate the dynamics of matter-wave solitons in the network. In the context of Bose–Einstein condensates (BECs), the book analyzes the dynamical properties of NLS equations with the external potential of different types, which govern the dynamics of modulated matter-waves in BECs with either two-body interactions or both two- and three-body interatomic interactions. It also discusses the method of investigating both the well-posedness and the ill-posedness of the boundary problem for linear and nonlinear Schrödinger equations and presents new results. Using simple examples, it then illustrates the results on the boundary problems. For both nonlinear transmission networks and Bose–Einstein condensates, the results obtained are supplemented by numerical calculations and presented as figures.
These lecture notes review recent results on the high-frequency analysis of nonlinear Schrödinger equations in the presence of an external potential. The book consists of two relatively independent parts: WKB analysis, and caustic crossing. In the first part, the basic linear WKB theory is constructed and then extended to the nonlinear framework. The most difficult supercritical case is discussed in detail, together with some of its consequences concerning instability phenomena. Applications of WKB analysis to functional analysis, in particular to the Cauchy problem for nonlinear Schrödinger equations, are also given. In the second part, caustic crossing is described, especially when the caustic is reduced to a point, and the link with nonlinear scattering operators is investigated.These notes are self-contained and combine selected articles written by the author over the past ten years in a coherent manner, with some simplified proofs. Examples and figures are provided to support the intuition, and comparisons with other equations such as the nonlinear wave equation are provided.
This book collects all known solutions to the nonlinear Schrödinger equation (NLSE) in one resource. In addition, the book organizes the solutions by classifying and grouping them based on aspects and symmetries they possess. Although most of the solutions presented in this book have been derived elsewhere using various methods, the authors present a systematic derivation of many solutions and even include new derivations. They have also presented symmetries and reductions that connect different solutions through transformations and enable classifying new solutions into known classes. For the user to verify that the presented solutions do satisfy the NLSE, this monumental work is accompanied by Mathematica Notebooks containing all solutions. This work also features a large number of figures, and animations are included to help visualize solutions and their dynamics.
The second edition of this book consists of three parts. The first one is dedicated to the WKB methods and the semi-classical limit before the formation of caustics. The second part treats the semi-classical limit in the presence of caustics, in the special geometric case where the caustic is reduced to a point (or to several isolated points). The third part is new in this edition, and addresses the nonlinear propagation of coherent states. The three parts are essentially independent.Compared with the first edition, the first part is enriched by a new section on multiphase expansions in the case of weakly nonlinear geometric optics, and an application related to this study, concerning instability results for nonlinear Schrödinger equations in negative order Sobolev spaces.The third part is an overview of results concerning nonlinear effects in the propagation of coherent states, in the case of a power nonlinearity, and in the richer case of Hartree-like nonlinearities. It includes explicit formulas of an independent interest, such as generalized Mehler's formula, generalized lens transform.
In this thesis we study dynamics of solitons in the generalized nonlinear Schrodinger equation (NLS) with an external potential in all dimensions except for 2. For a certain class of nonlinearities such an equation has solutions which are periodic in time and exponentially decaying in space, centered near different critical points of the potential. We call those solutions which are centered near the minima of the potential and which minimize energy restricted to L2 -unit sphere, trapped solitons or just solitons. In this thesis we prove, under certain conditions on the potentials and initial conditions, that trapped solitons are asymptotically stable. Moreover, if an initial condition is close to a trapped soliton then the solution looks like a moving soliton relaxing to its equilibrium position. The dynamical law of motion of the soliton (i.e. effective equations of motion for the soliton's center and momentum) is close to Newton's equation but with a dissipative term due to radiation of the energy to infinity.
Unlock the secrets of the universe with Schrödinger Equation - Fundamental Aspects and Potential Applications. Delve into the heart of quantum mechanics, where matter, energy, and mathematics intertwine in a dance of profound discovery. This essential volume introduces you to the spectral theory of the Schrödinger equation, offering a sturdy foundation to explore its enigmatic depths. Discover the fascinating world of scattering theory, unraveling the intricacies of quantum interactions, while the principles of quantization and Feynman path integrals reveal the mechanics of quantum systems. With a fresh perspective, we explore relative entropy methods and transformation theory, unveiling their significance in crafting singular diffusion processes akin to Schrödinger equations. This well-organized and accessible book caters to a diverse audience, from students and researchers to professionals in functional analysis, probability theory, and quantum dynamics. Within these pages, you’ll uncover the profound wonders of the Schrödinger equation and its vast potential in science, engineering, and technology. Embark on a journey through the quantum cosmos and let your understanding of the universe expand as you explore the quantum realm. Welcome to a world where matter and energy dance to the tune of Schrödinger’s equation, a world filled with infinite possibilities and extraordinary insights.
This collection of new and original papers on mathematical aspects of nonlinear dispersive equations includes both expository and technical papers that reflect a number of recent advances in the field. The expository papers describe the state of the art and research directions. The technical papers concentrate on a specific problem and the related analysis and are addressed to active researchers. The book deals with many topics that have been the focus of intensive research and, in several cases, significant progress in recent years, including hyperbolic conservation laws, Schrödinger operators, nonlinear Schrödinger and wave equations, and the Euler and Navier-Stokes equations.