Download Free Nonlinear Photonic Crystals Book in PDF and EPUB Free Download. You can read online Nonlinear Photonic Crystals and write the review.

Nonlinear optical studies of periodic dielectric structures have blossomed in the past two decades. New fabrication techniques are producing fiber grating and multidimensional photonic crystals in materials where the refractive index can be varied by light pulses and beams. Gap solitons that can propagate at any velocity from zero to the speed of light and spatial solitons that prevent the diffractive spread of light in waveguide arrays are two examples of the new phenomena described in this book. Many new materials and structures are being developed that will impact new optical devices with applications in optical communications and optical data processing. All the above topics are addressed in detail in this book.
Jet physics is an incredibly rich subject detailing the narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment. This book is a general overview of jet physics for scientists not directly involved in the field. It presents the basic experimental and theoretical problems arising when dealing with jets, and describing the solutions proposed in recent years.
Introduction to Nonlinear Optics of Photonic Crystals and Metamaterials, Second Edition presents concise examples illustrating the basic principles of the field, embedding a discussion of current and future device applications in a theoretical account of the non-linear behaviour of light at nanoscale to produce an informative and authoritative introduction to the subject for students trying to advance rapidly amongst the vanguard of modern applied physics and engineering. Pitched at an accessible level, this survey of some of the most important fundamentals of the field is ideal for researchers, undergraduate and graduate students, as well as self-taught students looking to expand their field of interest. Key Features: Provides reference to the current research literature to facilitate the reader with pursuing topics within the field. Suitable for self-study students. Includes concise presentations which focuses on the essential basic principle of the field. Discusses a review of current device applications. Presents the principles of photonic crystals and metamaterials and their applications at a basic level.
Since the invention of the first laser 30 years ago, the frequency conversion of laser radiation in nonlinear optical crystals has become an important technique widely used in quantum electronics and laser physics for solving various scientific and engineering problems. The fundamental physics of three-wave light interactions in nonlinear optical crystals is now largely understood. This has enabled the production of the various harmonic generators, sum and difference frequency generators, and parametric oscillators based on nonlinear crystals that are now commercially available. At the same time, scientists continue an active search for novel high-efficiency optical materials. Therefore, in our opinion, there is a great need for a handbook of nonlinear optical crystals, intended for specialists and practitioners with an engineering background. This book contains a complete description of the properties and applications of all nonlinear crystals reported in the literature up to the beginning of 1990. In addition, it contains the most important equations for calculating the main parameters (such as phase-matching direction, effective non-linearity, and conversion efficiency) of nonlinear frequency converters.
Since the invention of the first laser 30 years ago, the frequency conversion of laser radiation in nonlinear optical crystals has become an important technique widely used in quantum electronics and laser physics for solving various scientific and engineering problems. The fundamental physics of three-wave light interactions in nonlinear optical crystals is now well understood. This has enabled the production of various harmonic generators, sum-and difference frequency generators, and optical parametric oscillators based on nonlinear optical crystals that are now commercially available. At the same time, scientists continue an active search for novel, highly efficient nonlinear optical materials. Therefore, in our opinion, there is a great need for a handbook of nonlinear optical crystals, intended for specialists and practitioners with an engineering background. This book contains a complete description of the properties and applications of all nonliner optical crystals of practical importance reported in the literature up to the beginning of 1990. In addition, it contains the most important equations for calculating the main parameters (such as phase-matching direction, effective nonlinearity, and conversion efficiency) of nonlinear frequency converters.
The aim of the work is give an overview of the activity in the field of Photonic Crystal developed in the frame of COST P11 action . The main objective of the COST P11 action was to unify and coordinate national efforts aimed at studying linear and nonlinear optical interactions with Photonic Crystals (PCs), without neglecting an important aspect related to the material research as idea and methods of realizations of 3D PC, together with the development and implementation of measurement techniques for the experimental evaluation of their potential applications in different area, as for example telecommunication with novel optical fibers, lasers, nonlinear multi-functionality, display devices, opto-electronics, sensors. The book contains contributions from authors who gave their lecture at the Cost P11 Training School.
This book provides the theoretical background required for modelling photonic crystals and their optical properties, while presenting the large variety of devices where photonic crystals have found application. As such, it aims at building bridges between optics, electromagnetism and solid state physics. This second edition includes the most recent developments of two-dimensional photonic crystal devices, as well as some of the last results reported on metamaterials.