Download Free Nonlinear Phenomena In Flows Of Viscoelastic Polymer Fluids Book in PDF and EPUB Free Download. You can read online Nonlinear Phenomena In Flows Of Viscoelastic Polymer Fluids and write the review.

This monograph presents theoretical and experimental studies of flows of elastic liquids. Falling into this category are particularly the melts and concentrated solutions of such flexible-chain polymers as polyethylene, polyisobutylene and polypropylene, all of which are widely used in polymer processing. These polydisperse polymers vary greatly, from batch to batch, in their mechanical properties and 20% variation in a property is believed to be good enough. l 7 All recent books - devoted to the rheology of polymers do not answer the question of which constitutive equations should be used for solving the fluid mechanic problems of polymer processing in the usual case of an appreciable nonlinear region of deformation where nonlinear effects of shear and extensional elasticity are very important. Viscoelastic constitut ive equations cited commonly (see, e.g. Refs 5 and 6) do not describe simultaneously even the simplest cases of deformations, viz. simple shear and uniaxial extension. Moreover, some of them are internally inconsist ent and sometimes display highly unstable behaviour in simple flows without any fundamental reasons. Even more respected molecular ap free from these defects.
This monograph presents theoretical and experimental studies of flows of elastic liquids. Falling into this category are particularly the melts and concentrated solutions of such flexible-chain polymers as polyethylene, polyisobutylene and polypropylene, all of which are widely used in polymer processing. These polydisperse polymers vary greatly, from batch to batch, in their mechanical properties and 20% variation in a property is believed to be good enough. l 7 All recent books - devoted to the rheology of polymers do not answer the question of which constitutive equations should be used for solving the fluid mechanic problems of polymer processing in the usual case of an appreciable nonlinear region of deformation where nonlinear effects of shear and extensional elasticity are very important. Viscoelastic constitut ive equations cited commonly (see, e.g. Refs 5 and 6) do not describe simultaneously even the simplest cases of deformations, viz. simple shear and uniaxial extension. Moreover, some of them are internally inconsist ent and sometimes display highly unstable behaviour in simple flows without any fundamental reasons. Even more respected molecular ap free from these defects.
Polymer Processing Instabilities: Control and Understanding offers a practical understanding of the various flows that occur during the processing of polymer melts. The book pays particular attention to flow instabilities that affect the rate of production and the methods used to prevent and eliminate flow instabilities in order to increase product
Filling a gap in the literature and all set to become the standard in this field, this monograph begins with a look at computational viscoelastic fluid mechanics and studies of turbulent flows of dilute polymer solutions. It then goes on discuss simulations of nanocomposites, polymerization kinetics, computational approaches for polymers and modeling polyelectrolytes. Further sections deal with tire optimization, irreversible phenomena in polymers, the hydrodynamics of artificial and bacterial flagella as well as modeling and simulation in liquid crystals. The result is invaluable reading for polymer and theoretical chemists, chemists in industry, materials scientists and plastics technologists.
Processing techniques are critical to the performance of polymer products which are used in a wide range of industries. Advances in polymer processing: From macro- to nano- scales reviews the latest advances in polymer processing, techniques and materials. Part one reviews the fundamentals of polymer processing with chapters on rheology, materials and polymer extrusion. Part two then discusses advances in moulding technology with chapters on such topics as compression, rotational and blow moulding of polymers. Chapters in Part three review alternative processing technologies such as calendaring and coating, foam processing and radiation processing of polymers. Part four discusses micro and nano-technologies with coverage of themes such as processing of macro, micro and nanocomposites and processing of carbon nanotubes. The final section of the book addresses post-processing technologies with chapters on online monitoring and computer modelling as well as joining, machining, finishing and decorating of polymers. With is distinguished editors and team of international contributors, Advances in polymer processing: From macro- to nano- scales is an invaluable reference for engineers and academics concerned with polymer processing. Reviews the latest advances in polymer processing, techniques and materials analysing new challenges and opportunities Discusses the fundamentals of polymer processing considering the compounding and mixing of polymers as well as extrusion Assesses alternative processing technologies including calendaring and coating and thermoforming of polymers
This indispensable book describes lubricant additives, their synthesis, chemistry, and mode of action. All important areas of application are covered, detailing which lubricants are needed for a particular application. Laboratory and field performance data for each application is provided and the design of cost-effective, environmentally friendly technologies is fully explored. This edition includes new chapters on chlorohydrocarbons, foaming chemistry and physics, antifoams for nonaqueous lubricants, hydrogenated styrene–diene viscosity modifiers, alkylated aromatics, and the impact of REACh and GHS on the lubricant industry.
The continually growing plastics market consists of more than 250 million tons of product annually, making the recurring problem of polymer melt fracture an acute issue in the extrusion of these materials. Presenting a pictorial library of the different forms of melt fracture and real industrial extrusion melt fracture phenomena, Polymer Melt Fract
This IMA Volume in Mathematics and its Applications AMORPHOUS POLYMERS AND NON-NEWTONIAN FLUIDS is in part the proceedings of a workshop which was an integral part of the 1984-85 IMA program on CONTINUUM PHYSICS AND PARTIAL DIFFERENTIAL EQUATIONS We are grateful to the Scientific Committee: Haim Brezis Constantine Dafermos Jerry Ericksen David Kinderlehrer for planning and implementing an exciting and stimulating year-long program. We espe cially thank the Program Organizers, Jerry Ericksen, David Kinderlehrer, Stephen Prager and Matthew Tirrell for organizing a workshop which brought together scientists and mathematicians in a variety of areas for a fruitful exchange of ideas. George R. Sell Hans Weinberger Preface Experiences with amorphous polymers have supplied much of the motivation for developing novel kinds of molecular theory, to try to deal with the more significant features of systems involving very large molecules with many degrees offreedom. Similarly, the observations of many unusual macroscopic phenomena has stimulated efforts to develop linear and nonlinear theories of viscoelasticity to describe them. In either event, we are confronted not with a well-established, specific set of equations, but with a variety of equations, conforming to a loose pattern and suggested by general kinds of reasoning. One challenge is to devise techniques for finding equations capable of delivering definite and reliable predictions. Related to this is the issue of discovering ways to better grasp the nature of solutions ofthose equations showing some promise.
This monograph is based on a series of lectures presented at the 1999 NSF-CBMS Regional Research Conference on Mathematical Analysis of Viscoelastic Flows. It begins with an introduction to phenomena observed in viscoelastic flows, the formulation of mathematical equations to model such flows, and the behavior of various models in simple flows. It also discusses the asymptotics of the high Weissenberg limit, the analysis of flow instabilities, the equations of viscoelastic flows, jets and filaments and their breakup, as well as several other topics.