Download Free Nonlinear Periodic Structures Book in PDF and EPUB Free Download. You can read online Nonlinear Periodic Structures and write the review.

Although the mathematical theory of nonlinear waves and solitons has made great progress, its applications to concrete physical problems are rather poor, especially when compared with the classical theory of linear dispersive waves and nonlinear fluid motion. The Whitham method, which describes the combining action of the dispersive and nonlinear effects as modulations of periodic waves, is not widely used by applied mathematicians and physicists, though it provides a direct and natural way to treat various problems in nonlinear wave theory. Therefore it is topical to describe recent developments of the Whitham theory in a clear and simple form suitable for applications in various branches of physics.This book develops the techniques of the theory of nonlinear periodic waves at elementary level and in great pedagogical detail. It provides an introduction to a Whitham's theory of modulation in a form suitable for applications. The exposition is based on a thorough analysis of representative examples taken from fluid mechanics, nonlinear optics and plasma physics rather than on the formulation and study of a mathematical theory. Much attention is paid to physical motivations of the mathematical methods developed in the book. The main applications considered include the theory of collisionless shock waves in dispersive systems and the nonlinear theory of soliton formation in modulationally unstable systems. Exercises are provided to amplify the discussion of important topics such as singular perturbation theory, Riemann invariants, the finite gap integration method, and Whitham equations and their solutions.
Optical information processing of the future is associated with a new generation of compact nanoscale optical devices operating entirely with light. Moreover, adaptive features such as self-guiding, reconfiguration and switching become more and more important. Nonlinear devices offer an enormous potential for these applications. Consequently, innovative concepts for all-optical communication and information technologies based on nonlinear effects in photonic-crystal physics and nanoscale devices as metamaterials are of high interest. This book focuses on nonlinear optical phenomena in periodic media, such as photonic crystals, optically-induced, adaptive lattices, atomic lattices or metamaterials. The main purpose is to describe and overview new physical phenomena that result from the interplay between nonlinearities and structural periodicities and is a guide to actual and future developments for the expert reader in optical information processing, as well as in the physics of cold atoms in optical lattices.
This book addresses recent developments in mathematical analysis and computational methods for solving direct and inverse problems for Maxwell’s equations in periodic structures. The fundamental importance of the fields is clear, since they are related to technology with significant applications in optics and electromagnetics. The book provides both introductory materials and in-depth discussion to the areas in diffractive optics that offer rich and challenging mathematical problems. It is also intended to convey up-to-date results to students and researchers in applied and computational mathematics, and engineering disciplines as well.
Waves and defect modes in structures media.- Piezoelectric superlattices and shunted periodic arrays as tunable periodic structures and metamaterials.- Topology optimization.- Map-based approaches for periodic structures.- Methodologies for nonlinear periodic media.​ The contributions in this volume present both the theoretical background and an overview of the state-of-the art in wave propagation in linear and nonlinear periodic media in a consistent format. They combine the material issued from a variety of engineering applications, spanning a wide range of length scale, characterized by structures and materials, both man-made and naturally occurring, featuring geometry, micro-structural and/or materials properties that vary periodically in space, including periodically stiffened plates, shells and beam-like as well as bladed disc assemblies, phononic metamaterials, photonic crystals and ordered granular media. Along with linear models and applications, analytical methodologies for analyzing and exploiting complex dynamical phenomena arising in nonlinear periodic systems are also presented.​
This book is a collection of papers on the subject of nonlinear dynamics and its applications written by experts in this field. It offers the reader a sampling of exciting research areas in this fast-growing field. The topics covered include chaos, tools to analyze motions, fractal boundaries, dynamics of the Fitzhugh-Nagumo equation, structural control, separation of contaminations from signal of interest, parametric excitation, stochastic bifurcation, mode localization in repetitive structures, Toda lattice, transition from soliton to chaotic motion, nonlinear normal modes, noise perturbations of nonlinear dynamical systems, and phase locking of coupled limit cycle oscillators. Mathematical methods include Lie transforms, Monte Carlo simulations, stochastic calculus, perturbation methods and proper orthogonal decomposition. Applications include gyrodynamics, tether connected satellites, shell buckling, nonlinear circuits, volume oscillations of a large lake, systems with stick-slip friction, imperfect or disordered structures, overturning of rigid blocks, central pattern generators, flow induced oscillations, shape control and vibration suppression of elastic structures.All of these diverse contributions have a common thread: the world of nonlinear behavior. Although linear dynamics is an invaluable tool, there are many problems where nonlinear effects are essential. Some examples include bifurcation of solutions, stability of motion, the effects of large displacements, and subharmonic resonance. This book shows how nonlinear dynamics is currently being utilized and investigated. It will be of interest to engineers, applied mathematicians and physicists.
The biannual ISAAC congresses provide information about recent progress in the whole area of analysis including applications and computation. This book constitutes the proceedings of the third meeting.
This monograph presents an introduction to Harmonic Balance for nonlinear vibration problems, covering the theoretical basis, its application to mechanical systems, and its computational implementation. Harmonic Balance is an approximation method for the computation of periodic solutions of nonlinear ordinary and differential-algebraic equations. It outperforms numerical forward integration in terms of computational efficiency often by several orders of magnitude. The method is widely used in the analysis of nonlinear systems, including structures, fluids and electric circuits. The book includes solved exercises which illustrate the advantages of Harmonic Balance over alternative methods as well as its limitations. The target audience primarily comprises graduate and post-graduate students, but the book may also be beneficial for research experts and practitioners in industry.
This book is a printed edition of the Special Issue " Development and Application of Nonlinear Dissipative Device in Structural Vibration Control" that was published in Applied Sciences
Nonlinear optical studies of periodic dielectric structures have blossomed in the past two decades. New fabrication techniques are producing fiber grating and multidimensional photonic crystals in materials where the refractive index can be varied by light pulses and beams. Gap solitons that can propagate at any velocity from zero to the speed of light and spatial solitons that prevent the diffractive spread of light in waveguide arrays are two examples of the new phenomena described in this book. Many new materials and structures are being developed that will impact new optical devices with applications in optical communications and optical data processing. All the above topics are addressed in detail in this book.
Provides a comprehensive introduction to the dynamic response of lattice materials, covering the fundamental theory and applications in engineering practice Offers comprehensive treatment of dynamics of lattice materials and periodic materials in general, including phononic crystals and elastic metamaterials Provides an in depth introduction to elastostatics and elastodynamics of lattice materials Covers advanced topics such as damping, nonlinearity, instability, impact and nanoscale systems Introduces contemporary concepts including pentamodes, local resonance and inertial amplification Includes chapters on fast computation and design optimization tools Topics are introduced using simple systems and generalized to more complex structures with a focus on dispersion characteristics