Download Free Nonlinear Optical Parametric Processes In Liquids And Gases Book in PDF and EPUB Free Download. You can read online Nonlinear Optical Parametric Processes In Liquids And Gases and write the review.

Nonlinear Optical Parametric Processes in Liquids and Gases focuses on the parametric processes that occur in liquids and gases. This book examines the mathematical results that are intended mainly for their usefulness in quantifying the physical interpretations of the various concepts to actual systems. Comprised of six chapters, this text starts with a discussion on the nonlinear optical processes, and then explores the basis for nonlinear optical interactions. This book describes the various third-order frequency mixing processes and the basic properties of nonlinear interactions, including phase matching and resonant enhancement. Other chapters consider the processes of frequency mixing and harmonic generation that are used as illustrations of the basic principles. The final chapter explores the applications of several nonlinear optical interactions, with a focus on the use of nonlinear optical processes to control the propagation of optical waves or to obtain information about a material system. This book is intended for researchers and readers engaged in the study of university-level mathematics, electromagnetic theory, and atomic physics.
This new edition features numerous updates and additions. Especially 4 new chapters on Fiber Optics, Integrated Optics, Frequency Combs and Interferometry reflect the changes since the first edition. In addition, major complete updates for the chapters: Optical Materials and Their Properties, Optical Detectors, Nanooptics, and Optics far Beyond the Diffraction Limit. Features Contains over 1000 two-color illustrations. Includes over 120 comprehensive tables with properties of optical materials and light sources. Emphasizes physical concepts over extensive mathematical derivations. Chapters with summaries, detailed index Delivers a wealth of up-to-date references.
The papers collected in this volume in honor of the late Stanisław Kielich cover an impressive range of modern subjects in molecular science. These subjects include, among others, the nonlinear optics of molecules, new approaches to the electronic structure of large molecules, the properties of carbon nanotubes, fluorescence polarization spectroscopy, computational studies of systems of fundamental interest to collision-induced spectroscopy, the simulation of fluids, NLO materials, chemical bonding in complex molecules, the NLO properties of functionalized DNA and the magnetic properties of molecular assemblies. Written by eminent specialists, the papers should offer valuable guidance to a wide community of graduate students and researchers.
This book consists of contributions by leading authorities in nonlinear optics and optical physics. The topics covered include fundamental theories and formalisms on nonlinear optics and current topics of interest in optical physics, as well as more specialized subjects such as phase conjugation, nonlinear guided waves, parametric oscillations and some novel materials. The coverage is comprehensive but pedagogical in nature.
A wide-ranging review of modern techniques in atomic and molecular spectroscopy. A brief description of atomic and molecular structure is followed by the relevant energy structure expressions. A discussion of radiative properties and the origin of spectra leads into coverage of X-ray and photoelectron spectroscopy, optical spectroscopy, and radiofrequency and microwave techniques. The treatment of laser spectroscopy investigates various tunable sources and a wide range of techniques characterized by high sensitivity and high resolution. Throughout this book, the relation between fundamental and applied aspects is shown, in particular by descriptions of applications to chemical analysis, photochemistry, surface characterisation, environmental and medical diagnostics, remote sensing and astrophysics.
This book consists of contributions by leading authorities in nonlinear optics and optical physics. The topics covered include fundamental theories and formalisms on nonlinear optics and current topics of interest in optical physics, as well as more specialized subjects such as phase conjugation, nonlinear guided waves, parametric oscillations and some novel materials. The coverage is comprehensive but pedagogical in nature.
The book, ‘Laser Physics and Technology’, addresses fundamentals of laser physics, representative laser systems and techniques, and some important applications of lasers. The present volume is a collection of articles based on some of the lectures delivered at the School on ‘Laser Physics and Technology’ organized at Raja Ramanna Centre for Advanced Technology during March, 12-30, 2012. The objective of the School was to provide an in-depth knowledge of the important aspects of laser physics and technology to doctoral students and young researchers and motivate them for further work in this area. In keeping with this objective, the fourteen chapters, written by leading Indian experts, based on the lectures delivered by them at the School, provide along with class room type coverage of the fundamentals of the field, a brief review of the current status of the field. The book will be useful for doctoral students and young scientists who are embarking on a research in this area as well as to professionals who would be interested in knowing the current state of the field particularly in Indian context.
This book provides an introduction to the body of theory shared by several branches of modern optics--nonlinear optics, quantum electronics, laser physics, and quantum optics--with an emphasis on quantum and statistical aspects. It is intended for well prepared undergraduate and graduate students in physics, applied physics, electrical engineering, and chemistry who seek a level of preparation of sufficient maturity to enable them to follow the specialized literature.
A comprehensive guide to a new technology for enabling high-performance spectroscopy and laser sources Resonance Enhancement in Laser-Produced Plasmas offers a guide to the most recent findings in the newly emerged field of resonance-enhanced high-order harmonic generation using the laser pulses propagating through the narrow and extended laser-produced plasma plumes. The author—a noted expert in the field—presents an introduction and the theory that underpin the roles of resonances in harmonic generation. The book also contains a review of the most advanced methods of plasma harmonics generation at the conditions of coincidence of some harmonics, autoionizing states, and some ionic transitions possessing strong oscillator strengths. Comprehensive in scope, this text clearly demonstrates the importance of resonance-enhanced nonlinear optical effects leading to formation of efficient sources of coherent extreme ultraviolet radiation that can be practically applied. This important resource: Puts the focuses on novel applications of laser-plasma physics, such as the development of ultrashort-wavelength coherent light sources Details both the theoretical and experimental aspects of higher-order harmonic generation in laser-produced plasmas Contains information on early studies of resonance enhancement of harmonics in metal-ablated plasmas Analyzes the drawbacks of different theories of resonant high order harmonic generation Includes a discussion of the quasi-phase-matching and properties of semiconductor plasmas Written for researchers and students in the fields of physics, materials science, and electrical engineering who are interested in laser physics and optics, Resonance Enhancement in Laser-Produced Plasmas offers an introduction to the topic and covers recent experimental studies of various resonance processes in plasmas leading to enhancement of single harmonic.
The field of nonlinear optics emerged three decades ago with the development of the first operating laser and the demonstration of frequency doubling phenomena. These milestone discoveries not only generated much interest in laser science, but also set the stage for future work on nonlinear optics. This book presents an excellent overview of the exciting new advances in nonlinear optical (NLO) materials and their applications in emerging photonics technologies. It is the first reference source available to cover every NLO material published through 1995. All theoretical approaches, measurement techniques, materials, technologies, and applications are covered. With more than 1,800 bibliographic citations, 324 figures, 218 tables, and 812 equations, this book is an invaluable reference source for graduate and undergraduate students, researchers, scientists and engineers working in academia and industries in chemistry, solid-state physics, materials science, optical and polymer engineering, and computational science.