Download Free Nonlinear Modeling And Applications Volume 2 Book in PDF and EPUB Free Download. You can read online Nonlinear Modeling And Applications Volume 2 and write the review.

This the second volume of five from the 28th IMAC on Structural Dynamics and Renewable Energy, 2010, bringing together 17 chapters on Applications of Non-Linear Dynamics. It presents early findings from experimental and computational investigations on Non-Linear Dynamics including studies on Dynamics of a System of Coupled Oscillators with Geometrically Nonlinear Damping, Assigning the Nonlinear Distortions of a Two-input Single-output System, A Multi-harmonic Approach to Updating Locally Nonlinear Structures, A Block Rocking on a Seesawing Foundation, and Enhanced Order Reduction of Forced Nonlinear Systems Using New Ritz Vectors.
Based on a Santa Fe Institute and NATO sponsored workshop, this book brings together the ideas of leading researchers in the rapidly expanding, interdisciplinary field of nonlinear modeling in an attempt to stimulate the cross-fertilization of ideas and the search for unifying themes. The central theme of the workshop was the construction of nonlinear models from time-series data. Approaches to this problem have drawn from the disciplines of multivariate function approximation and neural nets, dynamical systems and chaos, statistics, information theory, and control theory. Applications have been made to economics, mechanical engineering, meteorology, speech processing, biology, and fluid dynamics.
The study of nonlinearities in physiology has been hindered by the lack of effective ways to obtain nonlinear dynamic models from stimulus-response data in a practical context. A considerable body of knowledge has accumulated over the last thirty years in this area of research. This book summarizes that progress, and details the most recent methodologies that offer practical solutions to this daunting problem. Implementation and application are discussed, and examples are provided using both synthetic and actual experimental data. This essential study of nonlinearities in physiology apprises researchers and students of the latest findings and techniques in the field.
Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes.
Since mathematical models express our understanding of how nature behaves, we use them to validate our understanding of the fundamentals about systems (which could be processes, equipment, procedures, devices, or products). Also, when validated, the model is useful for engineering applications related to diagnosis, design, and optimization. First, we postulate a mechanism, then derive a model grounded in that mechanistic understanding. If the model does not fit the data, our understanding of the mechanism was wrong or incomplete. Patterns in the residuals can guide model improvement. Alternately, when the model fits the data, our understanding is sufficient and confidently functional for engineering applications. This book details methods of nonlinear regression, computational algorithms,model validation, interpretation of residuals, and useful experimental design. The focus is on practical applications, with relevant methods supported by fundamental analysis. This book will assist either the academic or industrial practitioner to properly classify the system, choose between the various available modeling options and regression objectives, design experiments to obtain data capturing critical system behaviors, fit the model parameters based on that data, and statistically characterize the resulting model. The author has used the material in the undergraduate unit operations lab course and in advanced control applications.
This monograph contains a thorough treatment of methods for solving over- and underdetermined systems of equations, e.g. the minimum norm solution method with respect to weighted norms. The considered equations can be nonlinear or linear, and deterministic models as well as probabilistic ones are considered. An extensive appendix provides all necessary prerequisites like matrix algebra, matrix analysis and Lagrange multipliers, and a long list of references is also included.
Nonlinear analysis is a broad, interdisciplinary field characterized by a remarkable mixture of analysis, topology, and applications. Its concepts and techniques provide the tools for developing more realistic and accurate models for a variety of phenomena encountered in fields ranging from engineering and chemistry to economics and biology. This volume focuses on topics in nonlinear analysis pertinent to the theory of boundary value problems and their application in areas such as control theory and the calculus of variations. It complements the many other books on nonlinear analysis by addressing topics previously discussed fully only in scattered research papers. These include recent results on critical point theory, nonlinear differential operators, and related regularity and comparison principles. The rich variety of topics, both theoretical and applied, make Nonlinear Analysis useful to anyone, whether graduate student or researcher, working in analysis or its applications in optimal control, theoretical mechanics, or dynamical systems. An appendix contains all of the background material needed, and a detailed bibliography forms a guide for further study.
An Introduction to Nonlinear Analysis: Theory is an overview of some basic, important aspects of Nonlinear Analysis, with an emphasis on those not included in the classical treatment of the field. Today Nonlinear Analysis is a very prolific part of modern mathematical analysis, with fascinating theory and many different applications ranging from mathematical physics and engineering to social sciences and economics. Topics covered in this book include the necessary background material from topology, measure theory and functional analysis (Banach space theory). The text also deals with multivalued analysis and basic features of nonsmooth analysis, providing a solid background for the more applications-oriented material of the book An Introduction to Nonlinear Analysis: Applications by the same authors. The book is self-contained and accessible to the newcomer, complete with numerous examples, exercises and solutions. It is a valuable tool, not only for specialists in the field interested in technical details, but also for scientists entering Nonlinear Analysis in search of promising directions for research.
Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretation: is used to re-enforce the concepts and to foster understanding of the mathematical procedures. The student sees that many problems can be analyzed, and approximate solutions found before analytical solutions techniques are applied. Numerical approximations: early on, the student is exposed to numerical techniques. These numerical procedures are algorithmic and iterative. Worksheets are provided in Excel, MATLAB®, and MapleTM to facilitate the procedure. Algorithms: all algorithms are provided with a step-by-step format. Examples follow the summary to illustrate its use and application. Nonlinear Optimization: Models and Applications: Emphasizes process and interpretation throughout Presents a general classification of optimization problems Addresses situations that lead to models illustrating many types of optimization problems Emphasizes model formulations Addresses a special class of problems that can be solved using only elementary calculus Emphasizes model solution and model sensitivity analysis About the author: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. He received his Ph.D. at Clemson University and has taught at the United States Military Academy and at Francis Marion University where he was the chair of mathematics. He has written many publications, including over 20 books and over 150 journal articles. Currently, he is an adjunct professor in the Department of Mathematics at the College of William and Mary. He is the emeritus director of both the High School Mathematical Contest in Modeling and the Mathematical Contest in Modeling.
Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.