Download Free Nonlinear Model Predictive Control Of Combustion Engines Book in PDF and EPUB Free Download. You can read online Nonlinear Model Predictive Control Of Combustion Engines and write the review.

This book provides an overview of the nonlinear model predictive control (NMPC) concept for application to innovative combustion engines. Readers can use this book to become more expert in advanced combustion engine control and to develop and implement their own NMPC algorithms to solve challenging control tasks in the field. The significance of the advantages and relevancy for practice is demonstrated by real-world engine and vehicle application examples. The author provides an overview of fundamental engine control systems, and addresses emerging control problems, showing how they can be solved with NMPC. The implementation of NMPC involves various development steps, including: • reduced-order modeling of the process; • analysis of system dynamics; • formulation of the optimization problem; and • real-time feasible numerical solution of the optimization problem. Readers will see the entire process of these steps, from the fundamentals to several innovative applications. The application examples highlight the actual difficulties and advantages when implementing NMPC for engine control applications. Nonlinear Model Predictive Control of Combustion Engines targets engineers and researchers in academia and industry working in the field of engine control. The book is laid out in a structured and easy-to-read manner, supported by code examples in MATLAB®/Simulink®, thus expanding its readership to students and academics who would like to understand the fundamental concepts of NMPC. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Automotive control has developed over the decades from an auxiliary te- nology to a key element without which the actual performances, emission, safety and consumption targets could not be met. Accordingly, automotive control has been increasing its authority and responsibility – at the price of complexity and di?cult tuning. The progressive evolution has been mainly ledby speci?capplicationsandshorttermtargets,withthe consequencethat automotive control is to a very large extent more heuristic than systematic. Product requirements are still increasing and new challenges are coming from potentially huge markets like India and China, and against this ba- ground there is wide consensus both in the industry and academia that the current state is not satisfactory. Model-based control could be an approach to improve performance while reducing development and tuning times and possibly costs. Model predictive control is a kind of model-based control design approach which has experienced a growing success since the middle of the 1980s for “slow” complex plants, in particular of the chemical and process industry. In the last decades, severaldevelopments haveallowedusing these methods also for “fast”systemsandthis hassupporteda growinginterestinitsusealsofor automotive applications, with several promising results reported. Still there is no consensus on whether model predictive control with its high requi- ments on model quality and on computational power is a sensible choice for automotive control.
During the past decade model predictive control (MPC), also referred to as receding horizon control or moving horizon control, has become the preferred control strategy for quite a number of industrial processes. There have been many significant advances in this area over the past years, one of the most important ones being its extension to nonlinear systems. This book gives an up-to-date assessment of the current state of the art in the new field of nonlinear model predictive control (NMPC). The main topic areas that appear to be of central importance for NMPC are covered, namely receding horizon control theory, modeling for NMPC, computational aspects of on-line optimization and application issues. The book consists of selected papers presented at the International Symposium on Nonlinear Model Predictive Control – Assessment and Future Directions, which took place from June 3 to 5, 1998, in Ascona, Switzerland. The book is geared towards researchers and practitioners in the area of control engineering and control theory. It is also suited for postgraduate students as the book contains several overview articles that give a tutorial introduction into the various aspects of nonlinear model predictive control, including systems theory, computations, modeling and applications.
Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.
Practical Design and Application of Model Predictive Control is a self-learning resource on how to design, tune and deploy an MPC using MATLAB® and Simulink®. This reference is one of the most detailed publications on how to design and tune MPC controllers. Examples presented range from double-Mass spring system, ship heading and speed control, robustness analysis through Monte-Carlo simulations, photovoltaic optimal control, and energy management of power-split and air-handling control. Readers will also learn how to embed the designed MPC controller in a real-time platform such as Arduino®. The selected problems are nonlinear and challenging, and thus serve as an excellent experimental, dynamic system to show the reader the capability of MPC. The step-by-step solutions of the problems are thoroughly documented to allow the reader to easily replicate the results. Furthermore, the MATLAB® and Simulink® codes for the solutions are available for free download. Readers can connect with the authors through the dedicated website which includes additional free resources at www.practicalmpc.com. - Illustrates how to design, tune and deploy MPC for projects in a quick manner - Demonstrates a variety of applications that are solved using MATLAB® and Simulink® - Bridges the gap in providing a number of realistic problems with very hands-on training - Provides MATLAB® and Simulink® code solutions. This includes nonlinear plant models that the reader can use for other projects and research work - Presents application problems with solutions to help reinforce the information learned
Nonlinear Industrial Control Systems presents a range of mostly optimisation-based methods for severely nonlinear systems; it discusses feedforward and feedback control and tracking control systems design. The plant models and design algorithms are provided in a MATLAB® toolbox that enable both academic examples and industrial application studies to be repeated and evaluated, taking into account practical application and implementation problems. The text makes nonlinear control theory accessible to readers having only a background in linear systems, and concentrates on real applications of nonlinear control. It covers: different ways of modelling nonlinear systems including state space, polynomial-based, linear parameter varying, state-dependent and hybrid; design techniques for nonlinear optimal control including generalised-minimum-variance, model predictive control, quadratic-Gaussian, factorised and H∞ design methods; design philosophies that are suitable for aerospace, automotive, marine, process-control, energy systems, robotics, servo systems and manufacturing; steps in design procedures that are illustrated in design studies to define cost-functions and cope with problems such as disturbance rejection, uncertainties and integral wind-up; and baseline non-optimal control techniques such as nonlinear Smith predictors, feedback linearization, sliding mode control and nonlinear PID. Nonlinear Industrial Control Systems is valuable to engineers in industry dealing with actual nonlinear systems. It provides students with a comprehensive range of techniques and examples for solving real nonlinear control design problems.
Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.
Automotive control has developed over the decades from an auxiliary te- nology to a key element without which the actual performances, emission, safety and consumption targets could not be met. Accordingly, automotive control has been increasing its authority and responsibility – at the price of complexity and di?cult tuning. The progressive evolution has been mainly ledby speci?capplicationsandshorttermtargets,withthe consequencethat automotive control is to a very large extent more heuristic than systematic. Product requirements are still increasing and new challenges are coming from potentially huge markets like India and China, and against this ba- ground there is wide consensus both in the industry and academia that the current state is not satisfactory. Model-based control could be an approach to improve performance while reducing development and tuning times and possibly costs. Model predictive control is a kind of model-based control design approach which has experienced a growing success since the middle of the 1980s for “slow” complex plants, in particular of the chemical and process industry. In the last decades, severaldevelopments haveallowedusing these methods also for “fast”systemsandthis hassupporteda growinginterestinitsusealsofor automotive applications, with several promising results reported. Still there is no consensus on whether model predictive control with its high requi- ments on model quality and on computational power is a sensible choice for automotive control.
The coupling of models from different physical domains and the efficient and reliable simulation of multidisciplinary problems in engineering applications are important topics for various fields of engineering, in simulation technology and in the development and analysis of numerical solvers. The volume presents advanced modelling and simulation techniques for the dynamical analysis of coupled engineering systems consisting of mechanical, electrical, hydraulic and biological components as well as control devices often based on computer hardware and software. The book starts with some basics in multibody dynamics and in port-based modelling and focuses on the modelling and simulation of heterogeneous systems with special emphasis on robust and efficient numerical solution techniques and on a variety of applied problems including case studies of co-simulation in industrial applications, methods and problems of model based controller design and real-time application.
Although industrial processes are inherently nonlinear, many contributions for controller design for those plants are based on the assumption of a linear model of the system. However, in some cases it is difficult to represent a given process using a linear model. Model Predictive Control (MPC) is an optimal control approach which can effectively deal with constraints and multivariable processes in industries. Because of its advantages, MPC has been widely applied in automotive and process control communities. This book discusses the theory, practices and future challenges of model predictive control.