Download Free Nonlinear H Infinity Control Hamiltonian Systems And Hamilton Jacobi Equations Book in PDF and EPUB Free Download. You can read online Nonlinear H Infinity Control Hamiltonian Systems And Hamilton Jacobi Equations and write the review.

A comprehensive overview of nonlinear H∞ control theory for both continuous-time and discrete-time systems, Nonlinear H∞-Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear H∞-control, nonlinear H∞ -filtering, mixed H2/ H∞-nonlinear control and filtering, nonlinear H∞-almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter. Recent progress in developing computational schemes for solving the Hamilton-Jacobi equation (HJE) has facilitated the application of Hamilton-Jacobi theory in both mechanics and control. As there is currently no efficient systematic analytical or numerical approach for solving them, the biggest bottle-neck to the practical application of the nonlinear equivalent of the H∞-control theory has been the difficulty in solving the Hamilton-Jacobi-Isaacs partial differential-equations (or inequalities). In light of this challenge, the author hopes to inspire continuing research and discussion on this topic via examples and simulations, as well as helpful notes and a rich bibliography. Nonlinear H∞-Control, Hamiltonian Systems and Hamilton-Jacobi Equations was written for practicing professionals, educators, researchers and graduate students in electrical, computer, mechanical, aeronautical, chemical, instrumentation, industrial and systems engineering, as well as applied mathematics, economics and management.
A comprehensive overview of nonlinear H� control theory for both continuous-time and discrete-time systems, Nonlinear H�-Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear H�-control, nonlinear H � -filtering, mixed H2/ H�-nonlinear control and filtering, nonlinear H�-almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter. Recent progress in developing computational schemes for solving the Hamilton-Jacobi equation (HJE) has facilitated the application of Hamilton-Jacobi theory in both mechanics and control. As there is currently no efficient systematic analytical or numerical approach for solving them, the biggest bottle-neck to the practical application of the nonlinear equivalent of the H�-control theory has been the difficulty in solving the Hamilton-Jacobi-Isaacs partial differential-equations (or inequalities). In light of this challenge, the author hopes to inspire continuing research and discussion on this topic via examples and simulations, as well as helpful notes and a rich bibliography. Nonlinear H�-Control, Hamiltonian Systems and Hamilton-Jacobi Equations was written for practicing professionals, educators, researchers and graduate students in electrical, computer, mechanical, aeronautical, chemical, instrumentation, industrial and systems engineering, as well as applied mathematics, economics and management.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
This book gives an extensive survey of many important topics in the theory of Hamilton–Jacobi equations with particular emphasis on modern approaches and viewpoints. Firstly, the basic well-posedness theory of viscosity solutions for first-order Hamilton–Jacobi equations is covered. Then, the homogenization theory, a very active research topic since the late 1980s but not covered in any standard textbook, is discussed in depth. Afterwards, dynamical properties of solutions, the Aubry–Mather theory, and weak Kolmogorov–Arnold–Moser (KAM) theory are studied. Both dynamical and PDE approaches are introduced to investigate these theories. Connections between homogenization, dynamical aspects, and the optimal rate of convergence in homogenization theory are given as well. The book is self-contained and is useful for a course or for references. It can also serve as a gentle introductory reference to the homogenization theory.
This softcover book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamilton–Jacobi type and its interplay with Bellman’s dynamic programming approach to optimal control and differential games. It will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book.
* A comprehensive and systematic exposition of the properties of semiconcave functions and their various applications, particularly to optimal control problems, by leading experts in the field * A central role in the present work is reserved for the study of singularities * Graduate students and researchers in optimal control, the calculus of variations, and PDEs will find this book useful as a reference work on modern dynamic programming for nonlinear control systems
The theory of optimal control systems has grown and flourished since the 1960's. Many texts, written on varying levels of sophistication, have been published on the subject. Yet even those purportedly designed for beginners in the field are often riddled with complex theorems, and many treatments fail to include topics that are essential to a thorough grounding in the various aspects of and approaches to optimal control. Optimal Control Systems provides a comprehensive but accessible treatment of the subject with just the right degree of mathematical rigor to be complete but practical. It provides a solid bridge between "traditional" optimization using the calculus of variations and what is called "modern" optimal control. It also treats both continuous-time and discrete-time optimal control systems, giving students a firm grasp on both methods. Among this book's most outstanding features is a summary table that accompanies each topic or problem and includes a statement of the problem with a step-by-step solution. Students will also gain valuable experience in using industry-standard MATLAB and SIMULINK software, including the Control System and Symbolic Math Toolboxes. Diverse applications across fields from power engineering to medicine make a foundation in optimal control systems an essential part of an engineer's background. This clear, streamlined presentation is ideal for a graduate level course on control systems and as a quick reference for working engineers.