Download Free Nonlinear Functional Analysis Lectures 1963 1964 Book in PDF and EPUB Free Download. You can read online Nonlinear Functional Analysis Lectures 1963 1964 and write the review.

Nonlinearity and Functional Analysis is a collection of lectures that aim to present a systematic description of fundamental nonlinear results and their applicability to a variety of concrete problems taken from various fields of mathematical analysis. For decades, great mathematical interest has focused on problems associated with linear operators and the extension of the well-known results of linear algebra to an infinite-dimensional context. This interest has been crowned with deep insights, and the substantial theory that has been developed has had a profound influence throughout the mathematical sciences. This volume comprises six chapters and begins by presenting some background material, such as differential-geometric sources, sources in mathematical physics, and sources from the calculus of variations, before delving into the subject of nonlinear operators. The following chapters then discuss local analysis of a single mapping and parameter dependent perturbation phenomena before going into analysis in the large. The final chapters conclude the collection with a discussion of global theories for general nonlinear operators and critical point theory for gradient mappings. This book will be of interest to practitioners in the fields of mathematics and physics, and to those with interest in conventional linear functional analysis and ordinary and partial differential equations.
This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations. After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.
This single-volume textbook covers the fundamentals of linear and nonlinear functional analysis, illustrating most of the basic theorems with numerous applications to linear and nonlinear partial differential equations and to selected topics from numerical analysis and optimization theory. This book has pedagogical appeal because it features self-contained and complete proofs of most of the theorems, some of which are not always easy to locate in the literature or are difficult to reconstitute. It also offers 401 problems and 52 figures, plus historical notes and many original references that provide an idea of the genesis of the important results, and it covers most of the core topics from functional analysis.
The great number of varied approaches to hydrodynamic stability theory appear as a bulk of results whose classification and discussion are well-known in the literature. Several books deal with one aspect of this theory alone (e.g. the linear case, the influence of temperature and magnetic field, large classes of globally stable fluid motions etc.). The aim of this book is to provide a complete mathe matical treatment of hydrodynamic stability theory by combining the early results of engineers and applied mathematicians with the recent achievements of pure mathematicians. In order to ensure a more operational frame to this theory I have briefly outlined the main results concerning the stability of the simplest types of flow. I have attempted several definitions of the stability of fluid flows with due consideration of the connections between them. On the other hand, as the large number of initial and boundary value problems in hydrodynamic stability theory requires appropriate treat ments, most of this book is devoted to the main concepts and methods used in hydrodynamic stability theory. Open problems are expressed in both mathematical and physical terms.
Computer Science and Applied Mathematics: Iterative Solution of Nonlinear Equations in Several Variables presents a survey of the basic theoretical results about nonlinear equations in n dimensions and analysis of the major iterative methods for their numerical solution. This book discusses the gradient mappings and minimization, contractions and the continuation property, and degree of a mapping. The general iterative and minimization methods, rates of convergence, and one-step stationary and multistep methods are also elaborated. This text likewise covers the contractions and nonlinear majorants, convergence under partial ordering, and convergence of minimization methods. This publication is a good reference for specialists and readers with an extensive functional analysis background.
Since its development by Leray and Schauder in the 1930's, degree theory in Banach spaces has proved to be an important tool in tackling many analytic problems, including boundary value problems in ordinary and partial differential equations, integral equations, and eigenvalue and bifurcation problems. With this volume E. H. Rothe provides a largely self-contained introduction to topological degree theory, with an emphasis on its function-analytical aspects. He develops the definition and properties of the degree as much as possible directly in Banach space, without recourse to finite-dimensional theory. A basic tool used is a homotopy theorem for certain linear maps in Banach spaces which allows one to generalize the distinction between maps with positive determinant and those with negative determinant in finite-dimensional spaces. Rothe's book is addressed to graduate students who may have only a rudimentary knowledge of Banach space theory. The first chapter on function-analytic preliminaries provides most of the necessary background. For the benefit of less experienced mathematicians, Rothe introduces the topological tools (subdivision and simplicial approximation, for example) only to the degree of abstraction necessary for the purpose at hand. Readers will gain insight into the various aspects of degree theory, experience in function-analytic thinking, and a theoretic base for applying degree theory to analysis. Rothe describes the various approaches that have historically been taken towards degree theory, making the relationships between these approaches clear. He treats the differential method, the simplicial approach introduced by Brouwer in 1911, the Leray-Schauder method (which assumes Brouwer's degree theory for the finite-dimensional space and then uses a limit process in the dimension), and attempts to establish degree theory in Banach spaces intrinsically, by an application of the differential method in the Banach space case.
Nonlinear Functional Analysis and Applications provides information pertinent to the fundamental aspects of nonlinear functional analysis and its application. This book provides an introduction to the basic concepts and techniques of this field. Organized into nine chapters, this book begins with an overview of the possibilities for applying ideas from functional analysis to problems in analysis. This text then provides a systematic exposition of several aspects of differential calculus in norms and topological linear spaces. Other chapters consider the various settings in nonlinear functional analysis in which differentials play a significant role. This book discusses as well the generalized inverse for a bounded linear operator, whose range is not necessarily closed. The final chapter deals with the equations of hydrodynamics, which are usually highly nonlinear and difficult to solve. This book is a valuable resource for mathematicians. Readers who are interested in nonlinear functional analysis will also find this book useful.