Download Free Nonlinear Functional Analysis And Applications To Differential Equations Proceedings Of The Second School Book in PDF and EPUB Free Download. You can read online Nonlinear Functional Analysis And Applications To Differential Equations Proceedings Of The Second School and write the review.

This advanced level textbook is devoted to the description of systems which show ordered magnetic phases. A wide selection of topics is covered, including a detailed treatment of the mean-field approximation as the main paradigm for the phenomenological description of phase transitions. The book discusses the properties of low-dimensional systems and uses Green's functions extensively after a useful mathematical introduction. A thorough presentation of the RKKY and related models of indirect exchange is also featured, and a chapter on surface magnetism, rarely found in other textbooks, adds to the uniqueness of this book.For the second edition, three new chapters have been added, namely on magnetic anisotropy, on coherent magnon states and on local moments. Additionally, the chapter on itinerant magnetism has been enlarged by including a section on paramagnons.
This contributed volume showcases research and survey papers devoted to a broad range of topics on functional equations, ordinary differential equations, partial differential equations, stochastic differential equations, optimization theory, network games, generalized Nash equilibria, critical point theory, calculus of variations, nonlinear functional analysis, convex analysis, variational inequalities, topology, global differential geometry, curvature flows, perturbation theory, numerical analysis, mathematical finance and a variety of applications in interdisciplinary topics. Chapters in this volume investigate compound superquadratic functions, the Hyers–Ulam Stability of functional equations, edge degenerate pseudo-hyperbolic equations, Kirchhoff wave equation, BMO norms of operators on differential forms, equilibrium points of the perturbed R3BP, complex zeros of solutions to second order differential equations, a higher-order Ginzburg–Landau-type equation, multi-symplectic numerical schemes for differential equations, the Erdős-Rényi network model, strongly m-convex functions, higher order strongly generalized convex functions, factorization and solution of second order differential equations, generalized topologically open sets in relator spaces, graphical mean curvature flow, critical point theory in infinite dimensional spaces using the Leray-Schauder index, non-radial solutions of a supercritical equation in expanding domains, the semi-discrete method for the approximation of the solution of stochastic differential equations, homotopic metric-interval L-contractions in gauge spaces, Rhoades contractions theory, network centrality measures, the Radon transform in three space dimensions via plane integration and applications in positron emission tomography boundary perturbations on medical monitoring and imaging techniques, the KdV-B equation and biomedical applications.
This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems and displays how various approaches can easily be applied to a range of model cases. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.
The real world is complicated, as a result of which most mathematical models arising from mechanics, physics, chemistry and biology are nonlinear. Based on the efforts of scientists in the 20th century, especially in the last three decades, topological, variational, geometrical and other methods have developed rapidly in nonlinear analysis, which made direct studies of nonlinear models possible in many cases, and provided global information on nonlinear problems which was not available by the traditional linearization method. This volume reflects that rapid development in many areas of nonlinear analysis.
This work, consisting of expository articles as well as research papers, highlights recent developments in nonlinear analysis and differential equations. The material is largely an outgrowth of autumn school courses and seminars held at the University of Lisbon and has been thoroughly refereed. Several topics in ordinary differential equations and partial differential equations are the focus of key articles, including: * periodic solutions of systems with p-Laplacian type operators (J. Mawhin) * bifurcation in variational inequalities (K. Schmitt) * a geometric approach to dynamical systems in the plane via twist theorems (R. Ortega) * asymptotic behavior and periodic solutions for Navier--Stokes equations (E. Feireisl) * mechanics on Riemannian manifolds (W. Oliva) * techniques of lower and upper solutions for ODEs (C. De Coster and P. Habets) A number of related subjects dealing with properties of solutions, e.g., bifurcations, symmetries, nonlinear oscillations, are treated in other articles. This volume reflects rich and varied fields of research and will be a useful resource for mathematicians and graduate students in the ODE and PDE community.