Download Free Nonlinear Evolution Equations That Change Type Book in PDF and EPUB Free Download. You can read online Nonlinear Evolution Equations That Change Type and write the review.

This IMA Volume in Mathematics and its Applications NONLINEAR EVOLUTION EQUATIONS THAT CHANGE TYPE is based on the proceedings of a workshop which was an integral part of the 1988-89 IMA program on NONLINEAR WAVES. The workshop focussed on prob lems of ill-posedness and change of type which arise in modeling flows in porous materials, viscoelastic fluids and solids and phase changes. We thank the Coordinat ing Committee: James Glimm, Daniel Joseph, Barbara Lee Keyfitz, Andrew Majda, Alan Newell, Peter Olver, David Sattinger and David Schaeffer for planning and implementing an exciting and stimulating year-long program. We especially thank the workshop organizers, Barbara Lee Keyfitz and Michael Shearer, for their efforts in bringing together many of the major figures in those research fields in which theories for nonlinear evolution equations that change type are being developed. A vner Friedman Willard Miller, J r. ix PREFACE During the winter and spring quarters of the 1988/89 IMA Program on Non linear Waves, the issue of change of type in nonlinear partial differential equations appeared frequently. Discussion began with the January 1989 workshop on Two Phase Waves in Fluidized Beds, Sedimentation and Granular Flow; some of the papers in the proceedings of that workshop present strategies designed to avoid the appearance of change of type in models for multiphase fluid flow.
This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods.This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students.
Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximation results for evolution equations. Their work is not a textbook, but they explain how instructors can use various sections, or combinations of them, as a foundation for a range of courses. Annotation copyrighted by Book News, Inc., Portland, OR
This monograph is concerned with the basic results on Cauchy problems associated with nonlinear monotone operators in Banach spaces with applications to partial differential equations of evolutive type. It focuses on major results in recent decades.
This book is an edited version of lectures given by the authors at a seminar at the Rand Afrikaans University. It gives a survey on the Painlevé test, Painlevé property and integrability. Both ordinary differential equations and partial differential equations are considered.
Nonlinear evolution equations arise in many fields of sciences including physics, mechanics, and material science. This book introduces some important methods for dealing with these equations and explains clearly and concisely a wide range of relevant theories and techniques. These include the semigroup method, the compactness and monotone operator
The book is devoted to the questions of the long-time behavior of solutions for evolution equations, connected with kinetic models in statistical physics. There is a wide variety of problems where such models are used to obtain reasonable physical as well as numerical results (Fluid Mechanics, Gas Dynamics, Plasma Physics, Nuclear Physics, Turbulence Theory etc.). The classical examples provide the nonlinear Boltzmann equation. Investigation of the long-time behavior of the solutions for the Boltzmann equation gives an approach to the nonlinear fluid dynamic equations. From the viewpoint of dynamical systems, the fluid dynamic equations arise in the theory as a tool to describe an attractor of the kinetic equation.
Big Nate is the star goalie of his school's soccer team, and he is tasked with defending his goal and saving the day against Jefferson Middle School, their archrival.
The objectives of this monograph are to present some topics from the theory of monotone operators and nonlinear semigroup theory which are directly applicable to the existence and uniqueness theory of initial-boundary-value problems for partial differential equations and to construct such operators as realizations of those problems in appropriate function spaces. A highlight of this presentation is the large number and variety of examples introduced to illustrate the connection between the theory of nonlinear operators and partial differential equations. These include primarily semilinear or quasilinear equations of elliptic or of parabolic type, degenerate cases with change of type, related systems and variational inequalities, and spatial boundary conditions of the usual Dirichlet, Neumann, Robin or dynamic type. The discussions of evolution equations include the usual initial-value problems as well as periodic or more general nonlocal constraints, history-value problems, those which may change type due to a possibly vanishing coefficient of the time derivative, and other implicit evolution equations or systems including hysteresis models. The scalar conservation law and semilinear wave equations are briefly mentioned, and hyperbolic systems arising from vibrations of elastic-plastic rods are developed. The origins of a representative sample of such problems are given in the appendix.
"Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II will be most useful for graduate students and researchers in mathematics, engineering, and other related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University, Chicago, Illinois, USA.