Download Free Nonlinear Evolution Equations And Their Applications Book in PDF and EPUB Free Download. You can read online Nonlinear Evolution Equations And Their Applications and write the review.

This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0
This volume presents a collection of lectures on linear partial differntial equations and semigroups, nonlinear equations, stochastic evolutionary processes, and evolution problems from physics, engineering and mathematical biology. The contributions come from the 6th International Conference on Evolution Equations and Their Applications in Physical and Life Sciences, held in Bad Herrenalb, Germany.
* Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations. * Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs. * Well-organized text with detailed index and bibliography, suitable as a course text or reference volume.
This book, which is a continuation of Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, presents recent trends and developments upon fractional, first, and second order semilinear difference and differential equations, including degenerate ones. Various stability, uniqueness, and existence results are established using various tools from nonlinear functional analysis and operator theory (such as semigroup methods). Various applications to partial differential equations and the dynamic of populations are amply discussed. This self-contained volume is primarily intended for advanced undergraduate and graduate students, post-graduates and researchers, but may also be of interest to non-mathematicians such as physicists and theoretically oriented engineers. It can also be used as a graduate text on evolution equations and difference equations and their applications to partial differential equations and practical problems arising in population dynamics. For completeness, detailed preliminary background on Banach and Hilbert spaces, operator theory, semigroups of operators, and almost periodic functions and their spectral theory are included as well.
Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximation results for evolution equations. Their work is not a textbook, but they explain how instructors can use various sections, or combinations of them, as a foundation for a range of courses. Annotation copyrighted by Book News, Inc., Portland, OR
Image compression, the Navier-Stokes equations, and detection of gravitational waves are three seemingly unrelated scientific problems that, remarkably, can be studied from one perspective. The notion that unifies the three problems is that of ``oscillating patterns'', which are present in many natural images, help to explain nonlinear equations, and are pivotal in studying chirps and frequency-modulated signals. The first chapter of this book considers image processing, moreprecisely algorithms of image compression and denoising. This research is motivated in particular by the new standard for compression of still images known as JPEG-2000. The second chapter has new results on the Navier-Stokes and other nonlinear evolution equations. Frequency-modulated signals and theiruse in the detection of gravitational waves are covered in the final chapter. In the book, the author describes both what the oscillating patterns are and the mathematics necessary for their analysis. It turns out that this mathematics involves new properties of various Besov-type function spaces and leads to many deep results, including new generalizations of famous Gagliardo-Nirenberg and Poincare inequalities. This book is based on the ``Dean Jacqueline B. Lewis Memorial Lectures'' given bythe author at Rutgers University. It can be used either as a textbook in studying applications of wavelets to image processing or as a supplementary resource for studying nonlinear evolution equations or frequency-modulated signals. Most of the material in the book did not appear previously inmonograph literature.
Proceedings of the NSF Research Workshop on Contact Transformations, Held in Nashville, Tennessee, 1974
Nonlinear evolution equations arise in many fields of sciences including physics, mechanics, and material science. This book introduces some important methods for dealing with these equations and explains clearly and concisely a wide range of relevant theories and techniques. These include the semigroup method, the compactness and monotone operator