Download Free Nonlinear Evolution Equations And Potential Book in PDF and EPUB Free Download. You can read online Nonlinear Evolution Equations And Potential and write the review.

Preface.- Gottfried Anger: Direct and inverse problems in potential theory.- Viorel Barbu: Regularity results for sane differential equations associated with maximal monotone operators in Hilbert spaces.- Haim Brezis: Classes d'interpolation associées à un opérateur monotone et applications.- Siegfried Dnümmel: On inverse problems for k-dimensional potentials.- Jozef Ka?ur: Application of Rothe's method to nonlinear parabolic boundary value problems.- Josef Král: Potentials and removability of singularities.- Vladimir Lovicar: Theorem of Fréchet and asymptotically almost periodid solutions of.
This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods.This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students.
This volume constitutes the proceedings of the Symposium on Nonlinear Evolution Equations held in Madison, October 17-19, 1977. The thirteen papers presented herein follow the order of the corresponding lectures. This symposium was sponsored by the Army Research Office, the National Science Foundation, and the Office of Naval Research.
This book discusses recent trends and developments in the area of nonlinear evolution equations. It is a collection of invited lectures on the following topics: nonlinear parabolic equations (systems); nonlinear hyperbolic systems; free boundary problems; conservation laws and shock waves; travelling and solitary waves; regularity, stability and singularity, etc.
This book will be a valuable addition to the growing literature in the area and essential reading for all researchers in the field of soliton theory.
Nonlinear Evolution Equations and Dynamical Systems (NEEDS) provides a presentation of the state of the art. Except for a few review papers, the 40 contributions are intentially brief to give only the gist of the methods, proofs, etc. including references to the relevant litera- ture. This gives a handy overview of current research activities. Hence, the book should be equally useful to the senior resercher as well as the colleague just entering the field. Keypoints treated are: i) integrable systems in multidimensions and associated phenomenology ("dromions"); ii) criteria and tests of integrability (e.g., Painlev test); iii) new developments related to the scattering transform; iv) algebraic approaches to integrable systems and Hamiltonian theory (e.g., connections with Young-Baxter equations and Kac-Moody algebras); v) new developments in mappings and cellular automata, vi) applications to general relativity, condensed matter physics, and oceanography.
Philippe Bénilan was a most original and charismatic mathematician who had a deep and decisive impact on the theory of Nonlinear Evolution Equations. Dedicated to him, Nonlinear Evolution Equations and Related Topics contains research papers written by highly distinguished mathematicians. They are all related to Philippe Benilan's work and reflect the present state of this most active field. The contributions cover a wide range of nonlinear and linear equations.
NEEDs '92 was held in Dubna, Russia in July 1992. This set of proceedings compiles the lectures and short contributions on the soliton theory and its applications presented during the conference. The topics covered included the most recent results on relevant problems of nonlinear evolution systems such as: Multidimensional Integrable Systems, Geometric and Algebraic Methods, Painleve Property, Lie-Backlund Symmetries, Spectral Methods, Solitons and Coherent Structures, Computational Methods, Quantum Field and String Theories, Nonlinear Optics and Hydrodynamics, Condensed Matter etc. The extent of coverage for these important topics makes this book useful, informative and insighful for the mathematics and theoretical physics community, both the senior researches and those just entering the field.