Download Free Nonlinear Dynamics And Chaos In Semiconductors Book in PDF and EPUB Free Download. You can read online Nonlinear Dynamics And Chaos In Semiconductors and write the review.

The field of nonlinear dynamics and low-dimensional chaos has developed rapidly over the past twenty years. The principal advances have been in theoretical aspects but more recent applications in a wide variety of the sciences have been made. Nonlinear Dynamics and Chaos in Semiconductors is the first book to concentrate on specific physical and ex
This book brings together concepts from semiconductor physics, nonlinear-dynamics and chaos to examine semiconductor transport phenomena.
The field of nonlinear dynamics and low-dimensional chaos has developed rapidly over the past twenty years. The principal advances have been in theoretical aspects but more recent applications in a wide variety of the sciences have been made. Nonlinear Dynamics and Chaos in Semiconductors is the first book to concentrate on specific physical and experimental situations in semiconductors as well as examine how to use chaos theory to explain semiconductor phenomena. Written by a well-respected researcher of chaos in semiconductors, Nonlinear Dynamics and Chaos in Semiconductors provides a rich and detailed account of progress in research on nonlinear effects in semiconductor physics. Discussing both theory and experiment, the author shows how this powerful combination has lead to real progress with difficult nonlinear problems in this technologically important field. Nonlinear carrier dynamics, caused by low-temperature impact ionization avalanche of impurities in extrinsic semiconductors, and the emergence of intractable chaos are treated in detail. The book explores impact ionization models, linear stability analysis, bifurcation theory, fractal dimensions, and various analytical methods in chaos theory. It also describes spatial and spatiotemporal evolution of the current density filament formed by the impact ionization avalanche.
This text uses chaos theory and nonlinear dynamic systems to explain specific physical phenomena, both intrinsic to the materials used, and caused by external factors.
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
This book provides a summary of the research conducted at UCLA, Stanford University, and UCSD over the last ?ve years in the area of nonlinear dyn- ics and chaos as applied to digital communications. At ?rst blush, the term “chaotic communications” seems like an oxymoron; how could something as precise and deterministic as digital communications be chaotic? But as this book will demonstrate, the application of chaos and nonlinear dynamicstocommunicationsprovidesmanypromisingnewdirectionsinareas of coding, nonlinear optical communications, and ultra-wideband commu- cations. The eleven chapters of the book summarize many of the promising new approaches that have been developed, and point the way to new research directions in this ?eld. Digital communications techniques have been continuously developed and re?ned for the past ?fty years to the point where today they form the heart of a multi-hundred billion dollar per year industry employing hundreds of thousands of people on a worldwide basis. There is a continuing need for transmission and reception of digital signals at higher and higher data rates. There are a variety of physical limits that place an upper limit on these data rates, and so the question naturally arises: are there alternative communi- tion techniques that can overcome some of these limitations? Most digital communications today is carried out using electronic devices that are essentially “linear,” and linear system theory has been used to c- tinually re?ne their performance. In many cases, inherently nonlinear devices are linearized in order to achieve a certain level of linear system performance.
Nonlinear dynamics has been successful in explaining complicated phenomena in well-defined low-dimensional systems. Now it is time to focus on real-life problems that are high-dimensional or ill-defined, for example, due to delay, spatial extent, stochasticity, or the limited nature of available data. How can one understand the dynamics of such sys
Our life is a highly nonlinear process. It starts with birth and ends with death; in between there are a lot of ups and downs. Quite often, we believe that stable and steady situations, probably easy to capture by linearization, are paradisiacal, but already after a short period of everyday routine we usually become bored and seek change, that is, nonlinearities. If we reflect for a while, we notice that our life and our perceptions are mainly determined by nonlinear phenomena, for example, events occurring suddenly and unexpectedly. One may be surprised by how long scientists tried to explain our world by models based on a linear ansatz. Due to the lack of typical nonlinear patterns, although everybody experienced nonlinearities, nobody could classify them and, thus,· study them further. The discoveries of the last few decades have finally provided access to the world of nonlinear phenomena and have initiated a unique inter disciplinary field of research: nonlinear science. In contrast to the general tendency of science to become more branched out and specialized as the result of any progress, nonlinear science has brought together many different disciplines. This has been motivated not only by the immense importance of nonlinearities for science, but also by the wonderful simplicity ohhe concepts. Models like the logistic map can be easily understood by high school students and have brought revolutionary new insights into our scientific under standing.
This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in semiconductor lasers are discussed, but also for example the method of self-mixing interferometry in quantum-cascade lasers, which is indispensable in practical applications. Further, this edition covers chaos synchronization between two lasers and the application to secure optical communications. Another new topic is the consistency and synchronization property of many coupled semiconductor lasers in connection with the analogy of the dynamics between synaptic neurons and chaotic semiconductor lasers, which are compatible nonlinear dynamic elements. In particular, zero-lag synchronization between distant neurons plays a crucial role for information processing in the brain. Lastly, the book presents an application of the consistency and synchronization property in chaotic semiconductor lasers, namely a type of neuro-inspired information processing referred to as reservoir computing.
A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research. By presenting both experimental and theoretical results, the distinguished authors consider solitary lasers with nano-structured material, as well as integrated devices with complex feedback sections. In so doing, they address such topics as the bifurcation theory of systems with time delay, analysis of chaotic dynamics, and the modeling of quantum transport. They also address chaos-based cryptography as an example of the technical application of highly nonlinear laser systems.