Download Free Nonlinear Dynamical Systems With Self Excited And Hidden Attractors Book in PDF and EPUB Free Download. You can read online Nonlinear Dynamical Systems With Self Excited And Hidden Attractors and write the review.

This book highlights the latest findings on nonlinear dynamical systems including two types of attractors: self-excited and hidden attractors. Further, it presents both theoretical and practical approaches to investigating nonlinear dynamical systems with self-excited and hidden attractors. The book includes 20 chapters contributed by respected experts, which focus on various applications such as biological systems, memristor-based systems, fractional-order systems, finance systems, business cycles, oscillators, coupled systems, hyperchaotic systems, flexible robot manipulators, electronic circuits, and control models. Special attention is given to modeling, design, circuit realization, and practical applications to address recent research problems in nonlinear dynamical systems. The book provides a valuable reference guide to nonlinear dynamical systems for engineers, researchers, and graduate students, especially those whose work involves mechanics, electrical engineering, and control systems.
In recent years, entropy has been used as a measure of the degree of chaos in dynamical systems. Thus, it is important to study entropy in nonlinear systems. Moreover, there has been increasing interest in the last few years regarding the novel classification of nonlinear dynamical systems including two kinds of attractors: self-excited attractors and hidden attractors. The localization of self-excited attractors by applying a standard computational procedure is straightforward. In systems with hidden attractors, however, a specific computational procedure must be developed, since equilibrium points do not help in the localization of hidden attractors. Some examples of this kind of system are chaotic dynamical systems with no equilibrium points; with only stable equilibria, curves of equilibria, and surfaces of equilibria; and with non-hyperbolic equilibria. There is evidence that hidden attractors play a vital role in various fields ranging from phase-locked loops, oscillators, describing convective fluid motion, drilling systems, information theory, cryptography, and multilevel DC/DC converters. This Special Issue is a collection of the latest scientific trends on the advanced topics of dynamics, entropy, fractional order calculus, and applications in complex systems with self-excited attractors and hidden attractors.
In recent years, enormous progress has been made on nonlinear dynamics particularly on chaos and complex phenomena. This unique volume presents the advances made in theory, analysis, numerical simulation and experimental realization, promising novel practical applications on various topics of current interest on chaos and related fields of nonlinear dynamics.Particularly, the focus is on the following topics: synchronization vs. chaotic phenomena, chaos and its control in engineering dynamical systems, fractal-based dynamics, uncertainty and unpredictability measures vs. chaos, Hamiltonian systems and systems with time delay, local/global stability, bifurcations and their control, applications of machine learning to chaos, nonlinear vibrations of lumped mass mechanical/mechatronic systems (rigid body and coupled oscillator dynamics) governed by ODEs and continuous structural members (beams, plates, shells) vibrations governed by PDEs, patterns formation, chaos in micro- and nano-mechanical systems, chaotic reduced-order models, energy absorption/harvesting from chaotic, chaos vs. resonance phenomena, chaos exhibited by discontinuous systems, chaos in lab experiments.The present volume forms an invaluable source on recent trends in chaotic and complex dynamics for any researcher and newcomers to the field of nonlinear dynamics.
In recent years, entropy has been used as a measure of the degree of chaos in dynamical systems. Thus, it is important to study entropy in nonlinear systems. Moreover, there has been increasing interest in the last few years regarding the novel classification of nonlinear dynamical systems including two kinds of attractors: self-excited attractors and hidden attractors. The localization of self-excited attractors by applying a standard computational procedure is straightforward. In systems with hidden attractors, however, a specific computational procedure must be developed, since equilibrium points do not help in the localization of hidden attractors. Some examples of this kind of system are chaotic dynamical systems with no equilibrium points; with only stable equilibria, curves of equilibria, and surfaces of equilibria; and with non-hyperbolic equilibria. There is evidence that hidden attractors play a vital role in various fields ranging from phase-locked loops, oscillators, describing convective fluid motion, drilling systems, information theory, cryptography, and multilevel DC/DC converters. This Special Issue is a collection of the latest scientific trends on the advanced topics of dynamics, entropy, fractional order calculus, and applications in complex systems with self-excited attractors and hidden attractors.
What kind of dynamics is a piecewise linear system able to display? How may they generate heteroclinic chaos? How can the coexistence of attractors be designed and characterized? Is it necessary to have equilibrium points to generate chaotic behavior? Chaos theory and complex systems are interesting and evolving topics whose investigation from a theoretical and practical point of view constantly leads to arising questions. Interesting behaviors can be observed in self-excited attractors, hidden attractors and non-self-excited attractors.This book presents some fundamentals of linear system theory and recent approaches to design the three classes of chaotic attractors in piecewise linear systems. Each chapter presents a brief description and basic concepts to provide an overview of linear systems theory; chaos and multistability in integer linear systems; hidden and non-self-excited attractors; and fractional approaches. They also provide example systems to illustrate the concepts and design methods introduced. Some current topics under investigation are addressed from an integer order perspective to make the connection with the fractional order counterpart.This textbook provides a comprehensive introduction, methodologies, and analysis tools to study chaotic piecewise linear systems and will be suitable for undergraduate or graduate students interested in the field of chaos and complex dynamics.
This brief provides a general overview of nonlinear systems that exhibit hidden-attractor behavior, a topic of interest in subjects as divers as physics, mechanics, electronics and secure communications. The brief is intended for readers who want to understand the concepts of the hidden attractor and hidden-attractor systems and to implement such systems experimentally using common electronic components. Emergent topics in circuit implementation of systems with hidden attractors are included. The brief serves as an up-to-date reference on an important research topic for undergraduate/graduate students, laboratory researchers and lecturers in various areas of engineering and physics.
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Prediction of behavior of the dynamical systems, analysis and modeling of its structure is vitally important problem in engineering, economy and science today. Examples of such systems can be seen in the world around us and of course in almost every scientific discipline including such “exotic” domains like the earth’s atmosphere, turbulent fluids, economies (exchange rate and stock markets), population growth, physics (control of plasma), information flow in social networks and its dynamics, chemistry and complex networks. To understand such dynamics and to use it in research or industrial applications, it is important to create its models. For this purpose there is rich spectra of methods, from classical like ARMA models or Box Jenkins method to such modern ones like evolutionary computation, neural networks, fuzzy logic, fractal geometry, deterministic chaos and more. This proceeding book is a collection of the accepted papers to conference Nostradamus that has been held in Ostrava, Czech Republic. Proceeding also comprises of outstanding keynote speeches by distinguished guest speakers: Guanrong Chen (Hong Kong), Miguel A. F. Sanjuan (Spain), Gennady Leonov and Nikolay Kuznetsov (Russia), Petr Škoda (Czech Republic). The main aim of the conference is to create periodical possibility for students, academics and researchers to exchange their ideas and novel methods. This conference will establish forum for presentation and discussion of recent trends in the area of applications of various predictive methods for researchers, students and academics.
This book presents a collection of new articles written by world-leading experts and active researchers to present their recent finding and progress in the new area of chaotic systems and dynamics, regarding emerging subjects of unconventional chaotic systems and their complex dynamics.It guide readers directly to the research front of the new scientific studies. This book is unique of its kind in the current literature, presenting broad scientific research topics including multistability and hidden attractors in unconventional chaotic systems, such as chaotic systems without equilibria, with only stable equilibria, with a curve or a surface of equilibria. The book describes many novel phenomena observed from chaotic systems, such as non-Shilnikov type chaos, coexistence of different types of attractors, and spontaneous symmetry breaking in chaotic systems. The book presents state-of-the-art scientific research progress in the field with both theoretical advances and potential applications. This book is suitable for all researchers and professionals in the areas of nonlinear dynamics and complex systems, including research professionals, physicists, applied mathematicians, computer scientists and, in particular, graduate students in related fields.