Download Free Nonlinear Dielectric Spectroscopy Book in PDF and EPUB Free Download. You can read online Nonlinear Dielectric Spectroscopy and write the review.

This book introduces the ideas and concepts of nonlinear dielectric spectroscopy, outlines its history, and provides insight into the present state of the art of the experimental technology and understanding of nonlinear dielectric effects. Emphasis is on what can be learned from nonlinear experiments that could not be derived from the linear counterparts. The book explains that nonlinear dielectric spectroscopy can be used as a tool to measure structural recovery or physical aging, as well as connections between dynamics and thermodynamic variables such as enthalpy and entropy. Supercooled liquids in their viscous regime are ideal candidates for investigating nonlinear effects, because they are particularly sensitive to changes in temperature, and thus also to changes in the electric field. Other interesting materials covered are plastic crystals and complex liquids near criticality. The book also points out that, compared with other techniques such as mechanical shear experiments, the nonlinear regime of dielectric spectroscopy is special in the sense that the energies involved always remain small compared with thermal energies. To demonstrate this, nonlinear features of mechanical experiments are discussed. Theoretical approaches to nonlinear effects are particularly complicated because the tools available for the linear regime no longer apply. As a result, there is no single generally accepted theory to nonlinear dielectric responses of real liquids. Various approaches to nonlinear dielectric features have been reported, and the different aspects are communicated in several chapters. The book communicates recent progress most effectively through individual contributions from specialists in their respective fields. Chapter 'Third and Fifth Harmonic Responses in Viscous Liquids' is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Complex liquids constitute a basic element in modern materials science; their significant features include self-assembly, mesoscale structures, complex dynamics, unusual phases and enormous sensitivity to perturbations. Understanding their nature and properties are a great challenge to modern materials science that demands novel approaches. This book focuses on nonlinear dielectric phenomena, particularly on nonlinear dielectric spectroscopy (NDS), which may be considered a possible successor to broadband dielectric spectroscopy (BDS). NDS phenomena directly coupled to mesoscale heterogeneity fluctuations, so information obtained in this way is basically complementary to BDS tests. The book also discusses the application of NDS in a set of complex liquid systems: glassy liquids, liquid crystals, liquids with critical point phenomena, and bio-relevant liquids. The complementary application of NDS and BDS may allow the discovery of universal patterns for the whole category of complex liquids. Written by specialists in the field of nonlinear dielectric studies, theoreticians and experimentalists, ranging from solid state physics to biophysics, the book is organized so that it can serve as a basic textbook for a non-experienced reader.
Scanning Nonlinear Dielectric Microscopy: Investigation of Ferroelectric, Dielectric, and Semiconductor Materials and Devices is the definitive reference on an important tool to characterize ferroelectric, dielectric and semiconductor materials. Written by the inventor, the book reviews the methods for applying the technique to key materials applications, including the measurement of ferroelectric materials at the atomic scale and the visualization and measurement of semiconductor materials and devices at a high level of sensitivity. Finally, the book reviews new insights this technique has given to material and device physics in ferroelectric and semiconductor materials. The book is appropriate for those involved in the development of ferroelectric, dielectric and semiconductor materials devices in academia and industry.
"This book is about Broadband Dielectric Spectroscopy as a Modern Analytical Technique"--
Dielectric Spectroscopy of Electronic Materials: Applied Physics of Dielectrics incorporates the results of four decades of research and applications of dielectric spectroscopy for solids, mostly for the investigation of materials used in electronics. The book differs from others by more detailed analysis of the features of dielectric spectra conditioned by specific mechanisms of electrical polarization and conductivity. Some original methods are presented in the simulation of frequency distributions (relaxers and oscillators), with methods proposed for various ferroelectrics frequency-temperature dielectric spectra. Also described are original methods for ferroelectrics on microwaves investigation, including the features of thin films study. The book is not burdened by complex mathematical proofs and should help readers quickly understand how to apply dielectric spectroscopy methods to their own research problems. More advanced readers may also find this book valuable as a review of the key concepts and latest advances on the topics presented. - Introduces critical material characterization techniques by an expert with more than 40 years of experience in dielectric spectroscopy - Reviews advances in dielectric spectroscopy methods to enable advances such as the miniaturization of electronics at the nanoscale - Provides an overview of polarization mechanisms utilizing different models (i.e., oscillator and relaxation)
Beginning with a complete discussion of the fundamentals of dielectric spectroscopy, this book examines in detail the methods used in data modeling and in such specialized techniques as high-frequency dielectric measurements and thermally stimulated currents. The book covers applications in a range of polymeric systems including solutions, blends, and liquid crystals.
In general, a dielectric is considered as a non-conducting or insulating material (such as a ceramic or polymer used to manufacture a microelectronic device). This book describes the laws governing all dielectric phenomena.·A unified approach is used in describing each of the dielectric phenomena, with the aim of answering "what?", "how?" and "why" for the occurrence of each phenomenon;·Coverage unavailable in other books on ferroelectrics, piezoelectrics, pyroelectrics, electro-optic processes, and electrets;·Theoretical analyses are general and broadly applicable;·Mathematics is simplified and emphasis is placed on the physical insight of the mechanisms responsible for the phenomena;·Truly comprehensive coverage not available in the current literature.
Electrical Properties of Polymers describes the electric phenomena responsible for determining the chemical and supramolecular structure of polymers and polymeric materials. The authors explore the properties of quasi-static dipoles, reviewing Brownian motion, Debye theory, Langevin and Smoluchowski equations, and the Onsager model. This reference displays Maxwell and entropy equations, along with several others, that depict the thermodynamics of dielectric relaxation. Featuring end-of-chapter problems and useful appendices, the book reviews molecular dynamics simulations of dynamic dielectric properties and inspects mean-square dipole moments of gases, liquids, polymers, and fixed conformations.
This work covers the chemistry and physics of polymeric materials and their uses in the fields of electronics, photonics, and biomedical engineering. It discusses the relationship between polymeric supermolecular structures and ferroelectric, piezoelectric and pyroelectric properties.
This book is unique in supplying a comprehensive presentation of high pressures, negative pressures, random constraints and strong electric field exogenic (external) impacts on various soft matter systems. The book is an excellent guide in this novel and still puzzling research area. The book comes as a result from the ARW NATO brainstorming discussion in Odessa, Ukraine (8-12 Oct. 2005). It contains 31 papers prepared by key specialists in the field.