Download Free Nonlinear And Parametric Phenomena Theory And Applications In Radiophysical And Mechanical Systems Book in PDF and EPUB Free Download. You can read online Nonlinear And Parametric Phenomena Theory And Applications In Radiophysical And Mechanical Systems and write the review.

The book comprises a broad panorama of phenomena occurring in four major classes of radiophysical and mechanical systems — linear, nonlinear, parametric, and nonlinear-parametric. An analytical technique for the broad circle of issues under consideration is developed. It is presented in a user-friendly form, allowing its further direct application in research practices.Analytical methods are presented for investigating modulation-parametric and nonlinear systems, oscillating systems with periodic and almost periodic time-dependent parameters, effects of adaptive self-organization in coupled resonance systems and oscillating systems under the action of external forces, nonlinear with respect to the coordinates of excited systems.Of an interdisciplinary nature, this volume can serve as a handbook for developing lecture courses such as Fundamentals of Nonlinear Dynamics and Theory of Nonlinear Oscillations, Theory of Nonlinear Circuits and Systems, Fundamentals of Radiophysics and Electronics, Theory of Signals and Theoretical Radiophysics, Theoretical Mechanics and Electrodynamics.
This volume contains the papers presented at the NATO Advanced Research Institute on "Non-Linear Dynamics and Fundamental Interactions" held in Tashkent, Uzbekistan, from Oct.10-16,2004. The main objective of the Workshop was to bring together people working in areas of Fundamental physics relating to Quantum Field Theory, Finite Temperature Field theory and their applications to problems in particle physics, phase transitions and overlap regions with the areas of Quantum Chaos. The other important area is related to aspects of Non-Linear Dynamics which has been considered with the topic of chaology. The applications of such techniques are to mesoscopic systems, nanostructures, quantum information, particle physics and cosmology. All this forms a very rich area to review critically and then find aspects that still need careful consideration with possible new developments to find appropriate solutions. There were 29 one-hour talks and a total of seven half-hour talks, mostly by the students. In addition two round table discussions were organised to bring the important topics that still need careful consideration. One was devoted to questions and unsolved problems in Chaos, in particular Quantum Chaos. The other round table discussion considered the outstanding problems in Fundamental Interactions. There were extensive discussions during the two hours devoted to each area. Applications and development of new and diverse techniques was the real focus of these discussions. The conference was ably organised by the local committee consisting of D.U.
"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.
Discover the most recent advances in electromagnetic vortices In Electromagnetic Vortices: Wave Phenomena and Engineering Applications, a team of distinguished researchers delivers a cutting-edge treatment of electromagnetic vortex waves, including their theoretical foundation, related wave properties, and several potentially transformative applications. The book is divided into three parts. The editors first include resources that describe the generation, sorting, and manipulation of vortex waves, as well as descriptions of interesting wave behavior in the infrared and optical regimes with custom-designed nanostructures. They then discuss the generation, multiplexing, and propagation of vortex waves at the microwave and millimeter-wave frequencies. Finally, the selected contributions discuss several representative practical applications of vortex waves from a system perspective. With coverage that incorporates demonstration examples from a wide range of related sub-areas, this essential edited volume also offers: Thorough introductions to the generation of optical vortex beams and transformation optical vortex wave synthesizers Comprehensive explorations of millimeter-wave metasurfaces for high-capacity and broadband generation of vector vortex beams, as well as orbital angular momentum (OAM) detection and its observation in second harmonic generations Practical discussions of microwave SPP circuits and coding metasurfaces for vortex beam generation and OAM-based structured radio beams and their applications In-depth examinations and explorations of OAM multiplexing for wireless communications, wireless power transmission, as well as quantum communications and simulations Perfect for students of wireless communications, antenna/RF design, optical communications, and nanophotonics, Electromagnetic Vortices: Wave Phenomena and Engineering Applications is also an indispensable resource for researchers in academia, at large defense contractors, and in government labs.