Download Free Noninvasive Methods For Condition Monitoring And Electrical Fault Diagnosis Of Induction Motors Book in PDF and EPUB Free Download. You can read online Noninvasive Methods For Condition Monitoring And Electrical Fault Diagnosis Of Induction Motors and write the review.

This chapter provides a comprehensive analysis of noninvasive methods to diagnose stator winding insulation faults of an induction motor. Further, a novel noninvasive method is proposed to diagnose the root cause of winding failure due to unbalanced voltage to avoid catastrophic failure. Therefore, a winding function approach is utilized to derive an analytical expression for stator winding distribution and magnetomotive force (MMF). This tactic qualifies the conductor segment that generates MMF, and it also helps to analyze a healthy current spectrum. One can easily observe higher order harmonics in current spectrum; therefore, a new series of rotor harmonics is introduced to diagnose unbalanced supply. The locus of these harmonics is dependent on the poles, rotor bars, and slip. Due to the rapid complexity in industrial plants, it is inconceivable to continue human inspection to diagnose the faults. Thus, to avoid human inspection, in addition to new series of rotor harmonic, a fully automatic method based on neural network is proposed. This method not only diagnoses unbalanced voltage but it also recognize the percentage of unbalanced voltage by use of feed-forward multilayer perceptron (MLP) trained by back propagation. Finally, the experimental results shows the validation of this research work proposed method.
The book covers various issues related to machinery condition monitoring, signal processing and conditioning, instrumentation and measurements, faults for induction motors failures, new trends in condition monitoring, and the fault identification process using motor currents electrical signature analysis. It aims to present a new non-invasive and non-intrusive condition monitoring system, which has the capability to detect various defects in induction motor at incipient stages within an arbitrary noise conditions. The performance of the developed system has been analyzed theoretically and experimentally under various loading conditions of the motor. Covers current and new approaches applied to fault diagnosis and condition monitoring. Integrates concepts and practical implementation of electrical signature analysis. Utilizes LabVIEW tool for condition monitoring problems. Incorporates real-world case studies. Paves way a technology potentially for prescriptive maintenance via IIoT.
The ability to forecast motor mechanical faults at incipient stages is vital to reducing maintenance costs, operation downtime and safety hazards. This paper synthesized the progress in the research and development in condition monitoring and fault diagnosis of induction motors. The motor condition monitoring techniques are mainly classified into two categories that are invasive and non-invasive techniques. The invasive techniques are very basic, but they have some implementation difficulties and high cost. The non-invasive methods, namely MCSA, PVA and IPA, overcome the disadvantages associated to invasive methods. This book chapter reviews the various non-invasive condition monitoring methods for diagnosis of mechanical faults in induction motor and concludes that the instantaneous power analysis (IPA) and Park vector analysis (PVA) methods are best suitable for the diagnosis of small fault signatures associated to mechanical faults. Recommendations for the future research in these areas are also presented.
This book is a comprehensive, structural approach to fault diagnosis strategy. The different fault types, signal processing techniques, and loss characterisation are addressed in the book. This is essential reading for work with induction motors for transportation and energy.
With countless electric motors being used in daily life, in everything from transportation and medical treatment to military operation and communication, unexpected failures can lead to the loss of valuable human life or a costly standstill in industry. To prevent this, it is important to precisely detect or continuously monitor the working condition of a motor. Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis reviews diagnosis technologies and provides an application guide for readers who want to research, develop, and implement a more effective fault diagnosis and condition monitoring scheme—thus improving safety and reliability in electric motor operation. It also supplies a solid foundation in the fundamentals of fault cause and effect. Combines Theoretical Analysis and Practical Application Written by experts in electrical engineering, the book approaches the fault diagnosis of electrical motors through the process of theoretical analysis and practical application. It begins by explaining how to analyze the fundamentals of machine failure using the winding functions method, the magnetic equivalent circuit method, and finite element analysis. It then examines how to implement fault diagnosis using techniques such as the motor current signature analysis (MCSA) method, frequency domain method, model-based techniques, and a pattern recognition scheme. Emphasizing the MCSA implementation method, the authors discuss robust signal processing techniques and the implementation of reference-frame-theory-based fault diagnosis for hybrid vehicles. Fault Modeling, Diagnosis, and Implementation in One Volume Based on years of research and development at the Electrical Machines & Power Electronics (EMPE) Laboratory at Texas A&M University, this book describes practical analysis and implementation strategies that readers can use in their work. It brings together, in one volume, the fundamentals of motor fault conditions, advanced fault modeling theory, fault diagnosis techniques, and low-cost DSP-based fault diagnosis implementation strategies.
Master the art of vibration monitoring of induction motors with this unique guide to on-line condition assessment and fault diagnosis, building on the author's fifty years of investigative expertise. It includes: *Robust techniques for diagnosing of a wide range of common faults, including shaft misalignment and/or soft foot, rolling element bearing faults, sleeve bearing faults, magnetic and vibrational issues, resonance in vertical motor drives, and vibration and acoustic noise from inverters. *Detailed technical coverage of thirty real-world industrial case studies, from initial vibration spectrum analysis through to fault diagnosis and final strip-down. *An introduction to real-world vibration spectrum analysis for fault diagnosis, and practical guidelines to reduce bearing failure through effective grease management. This definitive book is essential reading for industrial end-users, engineers, and technicians working in motor design, manufacturing, and condition monitoring. It will also be of interest to researchers and graduate students working on condition monitoring.
Mass production companies have become obliged to reduce their production costs and sell more products with lower profit margins in order to survive in competitive market conditions. The complexity and automation level of machinery are continuously growing. This development calls for some of the most critical issues that are reliability and dependability of automatic systems. In the future, machines will be monitored remotely, and computer-aided techniques will be employed to detect faults in the future, and also there will be unmanned factories where machines and systems communicate to each other, detect their own faults, and can remotely intercept their faults. The pioneer studies of such systems are fault diagnosis studies. Thus, we hope that this book will contribute to the literature in this regard.
Methods of diagnosis and prognosis play a key role in the reliability and safety of industrial systems. Failure diagnosis requires the use of suitable sensors, which provide signals that are processed to monitor features (health indicators) for defects. These features are required to distinguish between operating states, in order to inform the operator of the severity level, or even the type, of a failure. Prognosis is defined as the estimation of a systems lifespan, including how long remains and how long has passed. It also encompasses the prediction of impending failures. This is a challenge that many researchers are currently trying to address. Electrical Systems, a book in two volumes, informs readers of the theoretical solutions to this problem, and the results obtained in several laboratories in France, Spain and further afield. To this end, many researchers from the scientific community have contributed to this book to share their research results.
An induction motor refers to an alternate current electric motor for which the electric current is required to produce torque in the rotor through electromagnetic induction from the magnetic field of the stator winding. Three phase induction motors play an important role in various industries because of their benefits over other electrical motors. As a result, there is a high demand for their dependable and secure operation. Any breakdowns or faults in the motor might result in longer downtime and can cause significant maintenance and revenue losses, requiring early fault detection for motor protection. Condition monitoring of induction motor is a new technology for detecting potential faults online. It entails taking measurements on a machine, while it is in operating condition for detecting faults. The goal of online condition monitoring is to lower maintenance costs and unexpected failure. This book outlines the applications of induction motors as well as their condition monitoring and fault diagnosis. It will serve as a valuable source of reference for graduate and post graduate students.
The purpose of this book is to give a basic understanding of rotor dynamics phenomena with the help of simple rotor models and subsequently, the modern analysis methods for real life rotor systems. This background will be helpful in the identification of rotor-bearing system parameters and its use in futuristic model-based condition monitoring and, fault diagnostics and prognostics. The book starts with introductory material for finite element methods and moves to linear and non-linear vibrations, continuous systems, vibration measurement techniques, signal processing and error analysis, general identification techniques in engineering systems, and MATLAB analysis of simple rotors. Key Features: • Covers both transfer matrix methods (TMM) and finite element methods (FEM) • Discusses transverse and torsional vibrations • Includes worked examples with simplicity of mathematical background and a modern numerical method approach • Explores the concepts of instability analysis and dynamic balancing • Provides a basic understanding of rotor dynamics phenomena with the help of simple rotor models including modern analysis methods for real life rotor systems.