Download Free Noninferiority Testing In Clinical Trials Book in PDF and EPUB Free Download. You can read online Noninferiority Testing In Clinical Trials and write the review.

Take Your NI Trial to the Next Level Reflecting the vast research on noninferiority (NI) designs from the past 15 years, Noninferiority Testing in Clinical Trials: Issues and Challenges explains how to choose the NI margin as a small fraction of the therapeutic effect of the active control in a clinical trial. Requiring no prior knowledge of NI testing, the book is easily accessible to both statisticians and nonstatisticians involved in drug development. With over 20 years of experience in this area, the author introduces the basic elements of the NI trials one at a time in a logical order. He discusses issues with estimating the effect size based on historical placebo control trials of the active control. The book covers fundamental concepts related to NI trials, such as assay sensitivity, constancy assumption, discounting, and preservation. It also describes patient populations, three-arm trials, and the equivalence of three or more groups.
Requiring no prior knowledge of NI testing, this book explains how to choose the NI margin as a small fraction of the therapeutic effect of the active control in a clinical trial. It discusses issues with estimating the effect size based on historical placebo control trials of the active control. The author covers basic concepts related to NI tr
Translating laboratory discoveries into successful therapeutics can be difficult. Clinical Trials in Neurology aims to improve the efficiency of clinical trials and the development of interventions in order to enhance the development of new treatments for neurologic diseases. It introduces the reader to the key concepts underpinning trials in the neurosciences. This volume tackles the challenges of developing therapies for neurologic disorders from measurement of agents in the nervous system to the progression of clinical signs and symptoms through illustrating specific study designs and their applications to different therapeutic areas. Clinical Trials in Neurology covers key issues in Phase I, II and III clinical trials, as well as post-marketing safety surveillance. Topics addressed include regulatory and implementation issues, outcome measures and common problems in drug development. Written by a multidisciplinary team, this comprehensive guide is essential reading for neurologists, psychiatrists, neurosurgeons, neuroscientists, statisticians and clinical researchers in the pharmaceutical industry.
The increased use of non-inferiority analysis has been accompanied by a proliferation of research on the design and analysis of non-inferiority studies. Using examples from real clinical trials, Design and Analysis of Non-Inferiority Trials brings together this body of research and confronts the issues involved in the design of a non-inferiority tr
Praise for the Second Edition: "... this is a useful, comprehensive compendium of almost every possible sample size formula. The strong organization and carefully defined formulae will aid any researcher designing a study." -Biometrics "This impressive book contains formulae for computing sample size in a wide range of settings. One-sample studies and two-sample comparisons for quantitative, binary, and time-to-event outcomes are covered comprehensively, with separate sample size formulae for testing equality, non-inferiority, and equivalence. Many less familiar topics are also covered ..." – Journal of the Royal Statistical Society Sample Size Calculations in Clinical Research, Third Edition presents statistical procedures for performing sample size calculations during various phases of clinical research and development. A comprehensive and unified presentation of statistical concepts and practical applications, this book includes a well-balanced summary of current and emerging clinical issues, regulatory requirements, and recently developed statistical methodologies for sample size calculation. Features: Compares the relative merits and disadvantages of statistical methods for sample size calculations Explains how the formulae and procedures for sample size calculations can be used in a variety of clinical research and development stages Presents real-world examples from several therapeutic areas, including cardiovascular medicine, the central nervous system, anti-infective medicine, oncology, and women’s health Provides sample size calculations for dose response studies, microarray studies, and Bayesian approaches This new edition is updated throughout, includes many new sections, and five new chapters on emerging topics: two stage seamless adaptive designs, cluster randomized trial design, zero-inflated Poisson distribution, clinical trials with extremely low incidence rates, and clinical trial simulation.
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.
Delineates the statistical building blocks and concepts of clinical trials.
While continuing to focus on methods of testing for two-sided equivalence, Testing Statistical Hypotheses of Equivalence and Noninferiority, Second Edition gives much more attention to noninferiority testing. It covers a spectrum of equivalence testing problems of both types, ranging from a one-sample problem with normally distributed observations
Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.