Download Free Noncommutative Geometry And Physics 4 Workshop On Strings Membranes And Topological Field Theory Book in PDF and EPUB Free Download. You can read online Noncommutative Geometry And Physics 4 Workshop On Strings Membranes And Topological Field Theory and write the review.

This book is a collection of the lectures and talks presented in the Tohoku Forum for Creativity in the thematic year 2015 'Fundamental Problems in Quantum Physics: Strings, Black Holes and Quantum Information', and related events in the period 2014-2016.This volume especially contains an overview of recent developments in the theory of strings and membranes, as well as topological field theory.
This book provides a systematic, comprehensive and up-to-date account of the recent developments in non-commutative geometry, at a pedagogical level. It does not go into the details of rigorous (advanced level) mathematical formulation of non-commutative geometry; rather, it restricts itself to the domain of strings and quantum fields.Since non-commutative geometry has recently aroused renewed interest in open string theory, the author motivates the text from the viewpoint of a string theory. He begins with an introduction to the subject, explaining what one means by non-commutative geometry and why it is relevant to study such geometry, and discussing its possible origin in a string theory.The book comprises nine chapters. Chapter 1 gives a sound mathematical ntroduction to non-commutative spacetime coordinates in classical and quantum physics. In Chapter 2, non-commutativity in a string theory is discussed at a pedagogic level. Chapter 3 deals with an aribitrary D-brane dynamics and Chapter 4 describes the non-commutative gauge theories on a D-brane. In Chapters 5-9, non-commutative quantum field theory (NCQFT) is addressed. In particular, Chapter 5 deals with the real scalar NCQFT, Chapter 6 with that of complex scalar field, Chapter 7 describes spontaneous symmetry breaking in scalar NCQFT, Chapter 8 deals with the U(1) Gauge theory and Chapter 9 with SU(n) Gauge theories.Students will find this book useful as a bridge between string and field theories. In addition, it will prove invaluable for interdisciplinary areas of study.
Boundary conformal field theory is concerned with a class of two-dimensional quantum field theories which display a rich mathematical structure and have many applications ranging from string theory to condensed matter physics. In particular, the framework allows discussion of strings and branes directly at the quantum level. Written by internationally renowned experts, this comprehensive introduction to boundary conformal field theory reaches from theoretical foundations to recent developments, with an emphasis on the algebraic treatment of string backgrounds. Topics covered include basic concepts in conformal field theory with and without boundaries, the mathematical description of strings and D-branes, and the geometry of strongly curved spacetime. The book offers insights into string geometry that go beyond classical notions. Describing the theory from basic concepts, and providing numerous worked examples from conformal field theory and string theory, this reference is of interest to graduate students and researchers in physics and mathematics.
Noncommutative geometry is a novel approach which is opening up new possibilities for geometry from a mathematical viewpoint. It is also providing new tools for the investigation of quantum space?time in physics. Recent developments in string theory have supported the idea of quantum spaces, and have strongly stimulated the research in this field. This self-contained volume contains survey lectures and research articles which address these issues and related topics. The book is accessible to both researchers and graduate students beginning to study this subject.
Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.
Following on the foundations laid in his earlier book "Introduction to Superstrings", Professor Kaku discusses such topics as the classification of conformal string theories, the non-polynomial closed string field theory, matrix models, and topological field theory. The presentation of the material is self-contained, and several chapters review material expounded in the earlier book. This book provides students with an understanding of the main areas of current progress in string theory, placing the reader at the forefront of current research.
The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view each particle: as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions—which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, or AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook.
Geometry and physics have been developed with a strong influence on each other. One of the most remarkable interactions between geometry and physics since 1980 has been an application of quantum field theory to topology and differential geometry. This book focuses on a relationship between two-dimensional quantum field theory and three-dimensional topology which has been studied intensively since the discovery of the Jones polynomial in the middle of the 1980s and Witten's invariantfor 3-manifolds derived from Chern-Simons gauge theory. An essential difficulty in quantum field theory comes from infinite-dimensional freedom of a system. Techniques dealing with such infinite-dimensional objects developed in the framework of quantum field theory have been influential in geometryas well. This book gives an accessible treatment for a rigorous construction of topological invariants originally defined as partition functions of fields on manifolds. The book is organized as follows: The Introduction starts from classical mechanics and explains basic background materials in quantum field theory and geometry. Chapter 1 presents conformal field theory based on the geometry of loop groups. Chapter 2 deals with the holonomy of conformal field theory. Chapter 3 treatsChern-Simons perturbation theory. The final chapter discusses topological invariants for 3-manifolds derived from Chern-Simons perturbation theory.
"Over the past decade string theory has had an increasing impact on many areas of physics: high energy and hadronic physics, gravitation and cosmology, mathematical physics and even condensed matter physics. The impact has been through many major conceptual and methodological developments in quantum field theory in the past fifteen years. In addition, string theory has exerted a dramatic influence on developments in contemporary mathematics, including Gromov-Witten theory, mirror symmetry in complex and symplectic geometry, and important ramifications in enumerative geometry." "This volume is derived from a conference of younger leading practitioners around the common theme: "What is string theory?" The talks covered major current topics, both mathematical and physical, related to string theory. Graduate students and research mathematicians interested in string theory in mathematics and physics will be interested in this workshop."--BOOK JACKET.