Download Free Non Traditional Micromachining Processes Book in PDF and EPUB Free Download. You can read online Non Traditional Micromachining Processes and write the review.

This book presents a complete coverage of micromachining processes from their basic material removal phenomena to past and recent research carried by a number of researchers worldwide. Chapters on effective utilization of material resources, improved efficiency, reliability, durability, and cost effectiveness of the products are presented. This book provides the reader with new and recent developments in the field of micromachining and microfabrication of engineering materials.
This book provides a detailed understanding of various forming, machining, and post processing techniques. Working principle, process mechanism, salient features and latest developments are primarily focused. It presents some basic and specialized processes to produce quality engineered parts. This book also incorporates some investigations on modelling, simulation and optimization of the aforementioned processes to improve quality and performance, productivity, and sustainability.
"This book is a collection of research on the advancement of intelligent technology in industrial environments and its applications within the manufacturing field"--
As technology advances, it is imperative to stay current in the newest developments made within the engineering industry and within material sciences. Trends in manufacturing such as 3D printing, casting, welding, surface modification, computer numerical control (CNC), non-traditional, Industry 4.0 ergonomics, and hybrid machining methods must be closely examined to utilize these important resources for the betterment of society. Advanced Manufacturing Techniques for Engineering and Engineered Materials provides a unified and complete overview about the recent and emerging trends, developments, and associated technology with scope for the commercialization of techniques specific to manufacturing materials. This book also reviews the various machining methods for difficult-to-cut materials and novel materials including matrix composites. Covering topics such as agro-waste, conventional machining, and material performance, this book is an essential resource for researchers, engineers, technologists, students and professors of higher education, industry workers, entrepreneurs, researchers, and academicians.
This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.
This book presents a complete coverage of micromachining processes from their basic material removal phenomena to past and recent research carried by a number of researchers worldwide. Chapters on effective utilization of material resources, improved efficiency, reliability, durability, and cost effectiveness of the products are presented. This book provides the reader with new and recent developments in the field of micromachining and microfabrication of engineering materials.
Increased demand for and developments in micromanufacturing have created a need for a resource that covers both the science and technology of this rapidly growing area. With contributions from eminent professors and researchers actively engaged in teaching, research, and development, Micromanufacturing Processes details the basic principles, tools,
This book disseminates recent research, theories, and practices relevant to the areas of surface engineering and the processing of materials for functional applications in the aerospace, automobile, and biomedical industries. The book focuses on the hidden technologies and advanced manufacturing methods that may not be standardized by research institutions but are greatly beneficial to material and manufacturing industrial engineers in many ways. It details projects, research activities, and innovations in a global platform to strengthen the knowledge of the concerned community. The book covers surface engineering including coating, deposition, cladding, nanotechnology, surface finishing, precision machining, processing, and emerging advanced manufacturing technologies to enhance the performance of materials in terms of corrosion, wear, and fatigue. The book captures the emerging areas of materials science and advanced manufacturing engineering and presents recent trends in research for researchers, field engineers, and academic professionals.
Continuous improvements in machining practices have created opportunities for businesses to develop more streamlined processes. This not only leads to higher success in day-to-day production, but also increases the overall success of businesses. Non-Conventional Machining in Modern Manufacturing Systems provides emerging research exploring the theoretical and practical aspects of technological advancements in industrial environments and applications in manufacturing. Featuring coverage on a broad range of topics such as optimization techniques, electrical discharge machining, and hot machining, this book is ideally designed for business managers, engineers, business professionals, researchers, and academicians seeking current research on non-conventional and technologically advanced machining processes.
This book presents the advances in abrasive based machining and finishing in broad sense. Specifically, the book covers the novel machining and finishing strategies implemented in various advanced machining processes for improving machining accuracy and overall quality of the product. This book presents the capability of advanced machining processes using abrasive grain. It also covers ways for enhancing the production rate as well as quality. It fulfills the gap between the production of any complicated components and successful machining with abrasive particles.