Download Free Non Neutral Plasmas Book in PDF and EPUB Free Download. You can read online Non Neutral Plasmas and write the review.

A nonneutral plasma is a many-body collection of charged particles in which there is not overall charge neutrality. The diverse areas of application of nonneutral plasmas include: precision atomic clocks, trapping of antimatter plasmas and antihydrogen production, quantum computers, nonlinear vortex dynamics and fundamental transport processes in trapped nonneutral plasmas, strongly-coupled one-component plasmas and Coulomb crystals, coherent radiation generation in free electron devices, such as free electron lasers, magnetrons and cyclotron masers, and intense charged particle beam propagation in periodic focusing accelerators and transport systems, to mention a few examples. Physics of Nonneutral Plasmas is a graduate-level text — complete with 138 assigned problems and the results from several classic experiments — which covers a broad range of topics related to the fundamental properties of collective processes and nonlinear dynamics of one-component and multispecies charged particle systems in which there is not overall charge neutrality. The subject matter is treated systematically from first principles, using a unified theoretical approach, and the emphasis is on the development of basic concepts that illustrate the underlying physical processes in circumstances where intense self fields play a major role in determining the evolution of the system. The theoretical analysis includes the full influence of dc space charge effects on detailed equilibrium, stability and transport properties. The statistical models used to describe the properties of nonneutral plasmas are based on the nonlinear Vlasov-Maxwell equations, the macroscopic fluid-Maxwell equations, or the Klimontovich-Maxwell equations, as appropriate, and extensive use is made of theoretical techniques developed in the description of multispecies electrically-neutral plasmas, as well as established techniques in classical mechanics, electrodynamics and statistical physics.Physics of Nonneutral Plasmas emphasizes basic physics principles, and the thorough presentation style is intended to have a lasting appeal to graduate students and researchers alike. Because of the advanced theoretical techniques developed for describing one-component charged particle systems, this book serves as a useful companion volume to Physics of Intense Charged Particle Beams in High Energy Accelerators by Ronald C Davidson and Hong Qin.
This rigorous explanation of plasmas is relevant to diverse plasma applications such as controlled fusion, astrophysical plasmas, solar physics, magnetospheric plasmas, and plasma thrusters. More thorough than previous texts, it exploits new powerful mathematical techniques to develop deeper insights into plasma behavior. After developing the basic plasma equations from first principles, the book explores single particle motion with particular attention to adiabatic invariance. The author then examines types of plasma waves and the issue of Landau damping. Magnetohydrodynamic equilibrium and stability are tackled with emphasis on the topological concepts of magnetic helicity and self-organization. Advanced topics follow, including magnetic reconnection, nonlinear waves, and the Fokker–Planck treatment of collisions. The book concludes by discussing unconventional plasmas such as non-neutral and dusty plasmas. Written for beginning graduate students and advanced undergraduates, this text emphasizes the fundamental principles that apply across many different contexts.
This book contains the proceedings of the Workshop on Non-Neutral Plasmas 2006. The Workshop focused on fundamental questions regarding confinement and dynamics of one-component plasmas as well as the relevance of these subjects to other related topics in physics, such as antimatter research, accelerator physics, atomic physics, and dusty plasmas.
TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.
Intended for advanced undergraduates and beginning graduates with some basic knowledge of optics and quantum mechanics, this text begins with a review of the relevant results of quantum mechanics, before turning to the electromagnetic interactions involved in slowing and trapping atoms and ions, in both magnetic and optical traps. The concluding chapters discuss a broad range of applications, from atomic clocks and studies of collision processes, to diffraction and interference of atomic beams at optical lattices and Bose-Einstein condensation.
Non-neutral plasmas are clouds of electrons or ions or anti-matter particles contained in a vacuum by magnetic and electric fields. Experiments on these simplest of plasmas give precise tests of basic theories of equilibrium, waves, and cross-field transport. Technical applications include positron beams, mass spectroscopy, quantum computing, and beams for free-electron lasers.
Annotation The study of non-neutral plasmas in traps is the keystone that connects parts of atomic and molecular physics, fluid dynamics, condensed matter physics, astrophysics, and antimatter physics with a variety of technologies such as atomic clocks, cyclotron mass spectrometers and a new standard for a pressure gauge, coherent radiation sources, accelerators, and fusion. Among the topics in 32 papers: long ion plasma confinement times with a "rotating wall"; pressure measurement using a pure electron plasma; and laser-cooled trapped-ion experiments at NIST. Includes an introduction by C.W. Roberson. No subject index. Annotation c. by Book News, Inc., Portland, Or.
This workshop was the first one in this series held since the announcement of the formation of cold anti-hydrogen by the ATHENA and ATRAP experiments. Research presented includes transport, collective modes, and the interplay between the two from both a particle and fluid perspective. This work is carried out in different geometries including cylindrical traps and toroidal systems. Research on cold anti-hydrogen is also represented, since accumulation of large numbers of antiprotons and positrons is a necessary precursor to recombination. Finally, several papers describing experiments on the physics of beams widens the scope to include beams and accelerators. The Workshop on Non-Neutral Plasma Physics brings together investigators from diverse areas whose research has the common feature of involving plasmas that have constituent particles with the same sign of charge.