Download Free Non Neuronal Mechanisms Of Brain Damage And Repair After Stroke Book in PDF and EPUB Free Download. You can read online Non Neuronal Mechanisms Of Brain Damage And Repair After Stroke and write the review.

A compilation of innovative findings and new directions in neurological recovery After decades of focusing on how to alleviate and prevent recurrence of acute CNS injuries, the emphasis has finally shifted towards repairing such devastating events and rehabilitation. This development has been made possible by substantial progress in understanding the scientific underpinnings of recovery as well as by novel diagnostic tools, and most importantly, by emerging therapies awaiting clinical trials. In this publication, several international experts introduce novel areas of neurological reorganization and repair following CNS damage. Principles and methods to monitor and augment neuroplasticity are explored in depth and supplemented by a critical appraisal of neurological repair mechanisms and possibilities to curtail disability using computer or robotic interfaces. Rather than providing a textbook approach of CNS restoration, the editors selected topics where progress is most imminent in this labyrinthine domain of medicine. Moreover, the varied background and origins of the contributors lend this book a truly global perspective on the current state of affairs in neurological recovery.
Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme
This open access book focuses on practical clinical problems that are frequently encountered in stroke rehabilitation. Consequences of diseases, e.g. impairments and activity limitations, are addressed in rehabilitation with the overall goal to reduce disability and promote participation. Based on the available best external evidence, clinical pathways are described for stroke rehabilitation bridging the gap between clinical evidence and clinical decision-making. The clinical pathways answer the questions which rehabilitation treatment options are beneficial to overcome specific impairment constellations and activity limitations and are well acceptable to stroke survivors, as well as when and in which settings to provide rehabilitation over the course of recovery post stroke. Each chapter starts with a description of the clinical problem encountered. This is followed by a systematic, but concise review of the evidence (RCTs, systematic reviews and meta-analyses) that is relevant for clinical decision-making, and comments on assessment, therapy (training, technology, medication), and the use of technical aids as appropriate. Based on these summaries, clinical algorithms / pathways are provided and the main clinical-decision situations are portrayed. The book is invaluable for all neurorehabilitation team members, clinicians, nurses, and therapists in neurology, physical medicine and rehabilitation, and related fields. It is a World Federation for NeuroRehabilitation (WFNR) educational initiative, bridging the gap between the rapidly expanding clinical research in stroke rehabilitation and clinical practice across societies and continents. It can be used for both clinical decision-making for individuals and as well as clinical background knowledge for stroke rehabilitation service development initiatives.
Increasing evidence identifies the possibility of restoring function to the damaged brain via exogenous therapies. One major target for these advances is stroke, where most patients can be left with significant disability. Treatments have the potential to improve the victim's quality of life significantly and reduce the time and expense of rehabilitation. Brain Repair After Stroke reviews the biology of spontaneous brain repair after stroke in animal models and in humans. Detailed chapters cover the many forms of therapy being explored to promote brain repair and consider clinical trial issues in this context. This book provides a summary of the neurobiology of innate and treatment-induced repair mechanisms after hypoxia and reviews the state of the art for human therapeutics in relation to promoting behavioral recovery after stroke. Essential reading for stroke physicians, neurologists, rehabilitation physicians and neuropsychologists.
This book provides a comprehensive overview of the latest research in the role of non-neuronal cells - astrocytes, oligodendrocytes, endothelial cells, pericytes, microglia, and other immune cells in ischemic brain injury and long-term recovery. In these cases, neurodegeneration and brain repair are controlled in a sophisticated system, incorporating interactions between different cell types and cellular systems. Also explored are the therapeutic strategies that target non-neuronal responses after stroke and their translational potentials.
A Doody's Core Title 2012 Stroke Recovery and Rehabilitation is the new gold standard comprehensive guide to the management of stroke patients. Beginning with detailed information on risk factors, epidemiology, prevention, and neurophysiology, the book details the acute and long-term treatment of all stroke-related impairments and complications. Additional sections discuss psychological issues, outcomes, community reintegration, and new research. Written by dozens of acknowledged leaders in the field, and containing hundreds of tables, graphs, and photographic images, Stroke Recovery and Rehabilitation features: The first full-length discussion of the most commonly-encountered component of neurorehabilitation Multi-specialty coverage of issues in rehabilitation, neurology, PT, OT, speech therapy, and nursing Focus on therapeutic management of stroke related impairments and complications An international perspective from dozens of foremost authorities on stroke Cutting edge, practical information on new developments and research trends Stroke Recovery and Rehabilitation is a valuable reference for clinicians and academics in rehabilitation and neurology, and professionals in all disciplines who serve the needs of stroke survivors.
The successful treatment of acute stroke remains one of the major challenges in clinical medicine. Over the last decades, the understanding of stroke pathophysiology has greatly improved, while the therapeutic options in stroke therapy remain very limited. Today, hyperacute mechanisms of damage, such as excitotoxicity, can be discriminated from delayed ones, such as inflammation and apoptosis. Targeting of inflammation has already been successfully applied in various stroke models, but translation into a clinically efficacious strategy has not been achieved so far. In this book, leading experts in basic cerebrovascular research as well as stroke treatment review the current evidence for and against an important role for inflammation in stroke, and explore the potential of treating or modulating inflammation in stroke therapy.
Stroke Rehabilitation: Insights from Neuroscience and Imaging informs and challenges neurologists, rehabilitation therapists, imagers, and stroke specialists to adopt more restorative and scientific approaches to stroke rehabilitation based on new evidence from neuroscience and neuroimaging literatures. The fields of cognitive neuroscience and neuroimaging are advancing rapidly and providing new insights into human behavior and learning. Similarly, improved knowledge of how the brain processes information after injury and recovers over time is providing new perspectives on what can be achieved through rehabilitation. Stroke Rehabilitation explores the potential to shape and maximize neural plastic changes in the brain after stroke from a multimodal perspective. Active skill based learning is identified as a central element of a restorative approach to rehabilitation. The evidence behind core learning principles as well as specific learning strategies that have been applied to retrain lost functions of movement, sensation, cognition and language are also discussed. Current interventions are evaluated relative to this knowledge base and examples are given of how active learning principles have been successfully applied in specific interventions. The benefits and evidence behind enriched environments is reviewed with examples of potential application in stroke rehabilitation. The capacity of adjunctive therapies, such as transcranial magnetic stimulation, to modulate receptivity of the damaged brain to benefit from behavioral interventions is also discussed in the context of this multimodal approach. Focusing on new insights from neuroscience and imaging, the book explores the potential to tailor interventions to the individual based on viable brain networks.
An account of the neurobiology of motor recovery in the arm and hand after stroke by two experts in the field. Stroke is a leading cause of disability in adults and recovery is often difficult, with existing rehabilitation therapies largely ineffective. In Broken Movement, John Krakauer and S. Thomas Carmichael, both experts in the field, provide an account of the neurobiology of motor recovery in the arm and hand after stroke. They cover topics that range from behavior to physiology to cellular and molecular biology. Broken Movement is the only accessible single-volume work that covers motor control and motor learning as they apply to stroke recovery and combines them with motor cortical physiology and molecular biology. The authors cast a critical eye at current frameworks and practices, offer new recommendations for promoting recovery, and propose new research directions for the study of brain repair. Krakauer and Carmichael discuss such subjects as the behavioral phenotype of hand and arm paresis in human and non-human primates; the physiology and anatomy of the motor system after stroke; mechanisms of spontaneous recovery; the time course of early recovery; the challenges of chronic stroke; and pharmacological and stem cell therapies. They argue for a new approach in which patients are subjected to higher doses and intensities of rehabilitation in a more dynamic and enriching environment early after stroke. Finally they review the potential of four areas to improve motor recovery: video gaming and virtual reality, invasive brain stimulation, re-opening the sensitive period after stroke, and the application of precision medicine.
Despite enormous advances made in the development of external effector prosthetics over the last quarter century, significant questions remain, especially those concerning signal degradation that occurs with chronically implanted neuroelectrodes. Offering contributions from pioneering researchers in neuroprosthetics and tissue repair, Indwel