Download Free Non Equilibrium Thermodynamics Of Heterogeneous Systems Second Edition Book in PDF and EPUB Free Download. You can read online Non Equilibrium Thermodynamics Of Heterogeneous Systems Second Edition and write the review.

The purpose of this book is to encourage the use of non-equilibrium thermodynamics to describe transport in complex, heterogeneous media. With large coupling effects between the transport of heat, mass, charge and chemical reactions at surfaces, it is important to know how one should properly integrate across systems where different phases are in contact. No other book gives a prescription of how to set up flux equations for transports across heterogeneous systems.The authors apply the thermodynamic description in terms of excess densities, developed by Gibbs for equilibrium, to non-equilibrium systems. The treatment is restricted to transport into and through the surface. Using local equilibrium together with the balance equations for the surface, expressions for the excess entropy production of the surface and of the contact line are derived. Many examples are given to illustrate how the theory can be applied to coupled transport of mass, heat, charge and chemical reactions; in phase transitions, at electrode surfaces and in fuel cells. Molecular simulations and analytical studies are used to add insight.
This book utilizes non-equilibrium thermodynamics to describe transport in complex, heterogeneous media. There are large coupling effects between transport of heat, mass, charge and chemical reactions at surfaces, and it is important to know how one should properly integrate across systems where different phases are in contact. There is no other book available today that gives a prescription of how to set up flux equations for transports across heterogeneous systems.
This book presents the theory of non-equilibrium thermodynamics in a pedagogical and practical way that targets engineering applications. In it, tools to take advantage of the second as well as the first law of thermodynamics are provided.The book starts by explaining how the entropy production is the cornerstone of non-equilibrium thermodynamics — the basis to describe coupled transport phenomena, which are highly relevant for several renewable energy technologies. The book also uses entropy production as the foundation for a systematic methodology to analyze and improve energy efficiency, and shows how entropy production can be used to test the consistency of transport models. The link between transport theory and energy efficiency is also shown, and the relationship to exergy analysis is demonstrated. The theory is applied using examples from practical cases like evaporation, heat exchange, reactor optimization, distillation and more.Non-Equilibrium Thermodynamics for Engineering Applications may be used as a textbook for undergraduate and graduate university curricula containing thermodynamics or energy conversion issues at large, chemical and mechanical engineering, applied chemistry and applied physics.
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts - A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes - Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions - Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems - Presents a unified analysis for transport and rate processes in various time and space scales - Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories - Has 198 fully solved examples and 287 practice problems - An Instructor Resource containing the Solution Manual can be obtained from the author: [email protected]
Covering recent developments in the theory of non-equilibrium thermodynamics and its applications, this title is aimed at a predominantly, but not exclusively, academic audience of practitioners of thermodynamics and energy conversion.
Murry Salby's new book provides an integrated treatment of the processes controlling the Earth-atmosphere system, developed from first principles through a balance of theory and applications. This book builds on Salby's previous book, Fundamentals of Atmospheric Physics. The scope has been expanded into climate, with the presentation streamlined for undergraduates in science, mathematics and engineering. Advanced material, suitable for graduate students and as a resource for researchers, has been retained but distinguished from the basic development. The book provides a conceptual yet quantitative understanding of the controlling influences, integrated through theory and major applications. It leads readers through a methodical development of the diverse physical processes that shape weather, global energetics and climate. End-of-chapter problems of varying difficulty develop student knowledge and its quantitative application, supported by answers and detailed solutions online for instructors.
This book is a printed edition of the Special Issue "Thermodynamics and Statistical Mechanics of Small Systems" that was published in Entropy
This textbook provides a strong foundation in the basic thermodynamics needed to analyze real-world engineering applications of thermodynamics in the field of energy systems. Written in a format readable to students new to the subject, this book will also help entrepreneurs venturing into the world of energy and power without a background in mechanical engineering.This book presents the basic theories of thermodynamics by focusing on the application of the subject matter to the most common applications of thermodynamics. It takes real-world problems from the author's over 40 years of experience as a practical, professional engineer and provides in-depth solutions to each problem using concepts the student has learned from earlier chapters. The case studies provide both examples of how thermodynamics is used in state-of-the-art tools to solve the case studies' problems, as well as ideas for future energy-efficient systems.Related Link(s)
This book provides you with a sound foundation for understanding abstract concepts (eg physical properties such as fugacity, etc or chemical processes, ie distillation, etc) of phase and reaction equilibria and shows you how to apply these concepts to solve practical problems using numerous and clear examples.
This book enables the reader to learn, in a single volume, equilibrium and nonequilibrium thermodynamics as well as generalized forms of hydrodynamics for linear and nonlinear processes applied to various hydrodynamic flow processes — including chemical oscillation phenomena and pattern formations, shock wave phenomena, sound wave propagations, and Liesegang pattern formation, amongst others.Chemical Thermodynamics introduces advanced undergraduate students and graduate students to the fundamental ideas and notions of the first and second laws of thermodynamics by seamlessly combining equilibrium and nonequilibrium thermodynamics in a unicameral viewpoint based on the first and second law of thermodynamics. Part I of the book discusses equilibrium thermodynamics in historical deference, covering topics generally dealt with in traditional equilibrium thermodynamics. In Part II, the concept of entropy for reversible processes is extended and developed for thermodynamics of irreversible processes by using the concept of calortropy (heat evolution), so that the mathematical theory of macroscopic processes in matter, including a generalized form of hydrodynamics, is ensured to remain consistent with the thermodynamic laws.