Download Free Non Equilibrium Statistical Mechanics Book in PDF and EPUB Free Download. You can read online Non Equilibrium Statistical Mechanics and write the review.

This is a presentation of the main ideas and methods of modern nonequilibrium statistical mechanics. It is the perfect introduction for anyone in chemistry or physics who needs an update or background in this time-dependent field. Topics covered include fluctuation-dissipation theorem; linear response theory; time correlation functions, and projection operators. Theoretical models are illustrated by real-world examples and numerous applications such as chemical reaction rates and spectral line shapes are covered. The mathematical treatments are detailed and easily understandable and the appendices include useful mathematical methods like the Laplace transforms, Gaussian random variables and phenomenological transport equations.
Groundbreaking monograph by Nobel Prize winner for researchers and graduate students covers Liouville equation, anharmonic solids, Brownian motion, weakly coupled gases, scattering theory and short-range forces, general kinetic equations, more. 1962 edition.
A comprehensive and pedagogical text on nonequilibrium statistical physics, covering topics from random walks to pattern formation.
"There is a symbiotic relationship between theoretical nonequilibrium statistical mechanics on the one hand and the theory and practice of computer simulation on the other. Sometimes, the initiative for progress has been with the pragmatic requirements of computer simulation and at other times, the initiative has been with the fundamental theory of nonequilibrium processes. This book summarises progress in this field up to 1990"--Publisher's description.
Self-contained and up-to-date guide to one-dimensional reactions, dynamics, diffusion and adsorption.
Introduction to applications and techniques in non-equilibrium statistical mechanics of chaotic dynamics.
This book deals with the basic principles and techniques of nonequilibrium statistical mechanics. The importance of this subject is growing rapidly in view of the advances being made, both experimentally and theoretically, in statistical physics, chemical physics, biological physics, complex systems and several other areas. The presentation of topics is quite self-contained, and the choice of topics enables the student to form a coherent picture of the subject. The approach is unique in that classical mechanical formulation takes center stage. The book is of particular interest to advanced undergraduate and graduate students in engineering departments.
This self-contained volume introduces modern methods of statistical mechanics in turbulence, with three harmonised lecture courses by world class experts.
This volume of Statistical Physics consititutes the second part of Statistical Physics (Springer Series in Solid-State Science, Vols. 30, 31) and is devoted to nonequilibrium theories of statistical mechanics. We start with an intro duction to the stochastic treatment of Brownian motion and then proceed to general problems involved in deriving a physical process from an underlying more basic process. Relaxation from nonequilibrium to equilibrium states and the response of a system to an external disturbance form the central problems of nonequilibrium statistical mechanics. These problems are treated both phenomenologically and microscopically along the lines of re cent developments. Emphasis is placed on fundamental concepts and methods rather than on applications which are too numerous to be treated exhaustively within the limited space of this volume. For information on the general aim of this book, the reader is referred to the Foreword. For further reading, the reader should consult the bibliographies, although these are not meant to be exhaustive.
This book offers a comprehensive picture of nonequilibrium phenomena in nanoscale systems. Written by internationally recognized experts in the field, this book strikes a balance between theory and experiment, and includes in-depth introductions to nonequilibrium fluctuation relations, nonlinear dynamics and transport, single molecule experiments, and molecular diffusion in nanopores. The authors explore the application of these concepts to nano- and biosystems by cross-linking key methods and ideas from nonequilibrium statistical physics, thermodynamics, stochastic theory, and dynamical systems. By providing an up-to-date survey of small systems physics, the text serves as both a valuable reference for experienced researchers and as an ideal starting point for graduate-level students entering this newly emerging research field.