Download Free Non Coherent Acquisition Techniques For High Sensitivity Gnss Receivers Book in PDF and EPUB Free Download. You can read online Non Coherent Acquisition Techniques For High Sensitivity Gnss Receivers and write the review.

Many important GPS applications require a GNSS (global navigation satellite system) receiver with the ability to work with weak signals. This book addresses the critical issue, introducing new, efficient GNSS receiver algorithms designed for weak signals and various dynamic conditions.
Build and operate multi-GNSS and multi-frequency receivers with state-of-the-art techniques using this up-to-date, thorough, and easy-to-follow text. Covering both theory and practise, and complemented by MATLAB© code and digital samples with which to test it, this package is a powerful learning tool for students, engineers, and researchers everywhere. Suggestions of hardware equipment allow you to get to work straight away and to create your own samples. Concisely but clearly explaining all the fundamental concepts in one place, this is also a perfect resource for readers seeking an introduction to the topic.
This newly revised and greatly expanded edition of the popular Artech House book Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems offers you a current and comprehensive understanding of satellite navigation, inertial navigation, terrestrial radio navigation, dead reckoning, and environmental feature matching . It provides both an introduction to navigation systems and an in-depth treatment of INS/GNSS and multisensor integration. The second edition offers a wealth of added and updated material, including a brand new chapter on the principles of radio positioning and a chapter devoted to important applications in the field. Other updates include expanded treatments of map matching, image-based navigation, attitude determination, acoustic positioning, pedestrian navigation, advanced GNSS techniques, and several terrestrial and short-range radio positioning technologies .. The book shows you how satellite, inertial, and other navigation technologies work, and focuses on processing chains and error sources. In addition, you get a clear introduction to coordinate frames, multi-frame kinematics, Earth models, gravity, Kalman filtering, and nonlinear filtering. Providing solutions to common integration problems, the book describes and compares different integration architectures, and explains how to model different error sources. You get a broad and penetrating overview of current technology and are brought up to speed with the latest developments in the field, including context-dependent and cooperative positioning.
This book explore the use of new technologies in the area of satellite navigation receivers. In order to construct a reconfigurable receiver with a wide range of applications, the authors discuss receiver architecture based on software-defined radio techniques. The presentation unfolds in a user-friendly style and goes from the basics to cutting-edge research. The book is aimed at applied mathematicians, electrical engineers, geodesists, and graduate students. It may be used as a textbook in various GPS technology and signal processing courses, or as a self-study reference for anyone working with satellite navigation receivers.
The advancement of software radio technology has provided an opportunity for the design of performance-enhanced GNSS receivers that are more flexible and easier to develop than their FPGA or ASIC based counterparts. Filling a gap in the current literature on the subject, this highly practical resource offers you an in-depth understanding of navigation signal detection and estimation algorithms and their implementation in a software radio. This unique book focuses on high precision applications for GNSS signals and an innovative RTK receiver concept based on difference correlators. You learn how to develop navigation receivers for top performance using basic algorithms, like correlation and tracking, which can be understood on an intuitive level. Additionally, the book provides you with a theoretical framework for signal estimation and detection that gives you the knowledge you need to make performance assessments without building a receiver. The theoretical treatment also gives you hints for choosing optimal algorithms for your projects in the field.
A comprehensive review of position location technology — from fundamental theory to advanced practical applications Positioning systems and location technologies have become significant components of modern life, used in a multitude of areas such as law enforcement and security, road safety and navigation, personnel and object tracking, and many more. Position location systems have greatly reduced societal vulnerabilities and enhanced the quality of life for billions of people around the globe — yet limited resources are available to researchers and students in this important field. The Handbook of Position Location: Theory, Practice, and Advances fills this gap, providing a comprehensive overview of both fundamental and cutting-edge techniques and introducing practical methods of advanced localization and positioning. Now in its second edition, this handbook offers broad and in-depth coverage of essential topics including Time of Arrival (TOA) and Direction of Arrival (DOA) based positioning, Received Signal Strength (RSS) based positioning, network localization, and others. Topics such as GPS, autonomous vehicle applications, and visible light localization are examined, while major revisions to chapters such as body area network positioning and digital signal processing for GNSS receivers reflect current and emerging advances in the field. This new edition: Presents new and revised chapters on topics including localization error evaluation, Kalman filtering, positioning in inhomogeneous media, and Global Positioning (GPS) in harsh environments Offers MATLAB examples to demonstrate fundamental algorithms for positioning and provides online access to all MATLAB code Allows practicing engineers and graduate students to keep pace with contemporary research and new technologies Contains numerous application-based examples including the application of localization to drone navigation, capsule endoscopy localization, and satellite navigation and localization Reviews unique applications of position location systems, including GNSS and RFID-based localization systems The Handbook of Position Location: Theory, Practice, and Advances is valuable resource for practicing engineers and researchers seeking to keep pace with current developments in the field, graduate students in need of clear and accurate course material, and university instructors teaching the fundamentals of wireless localization.
The limitations of satellites create a large gap in assistive directional technologies, especially indoors. The methods and advances in alternate directional technologies is allowing for new systems to fill the gaps caused by the limitations of GPS systems. Positioning and Navigation in Complex Environments is a critical scholarly resource that examines the methodologies and advances in technologies that allow for indoor navigation. Featuring insight on a broad scope of topics, such as multipath mitigation, Global Navigation Satellite System (GNSS), and multi-sensor integration, this book is directed toward data scientists, engineers, government agencies, researchers, and graduate-level students.
Global Navigation Satellite System (GNSS) plays a key role in high precision navigation, positioning, timing, and scientific questions related to precise positioning. This is a highly precise, continuous, all-weather, and real-time technique. The book is devoted to presenting recent results and developments in GNSS theory, system, signal, receiver, method, and errors sources, such as multipath effects and atmospheric delays. Furthermore, varied GNSS applications are demonstrated and evaluated in hybrid positioning, multi-sensor integration, height system, Network Real Time Kinematic (NRTK), wheeled robots, and status and engineering surveying. This book provides a good reference for GNSS designers, engineers, and scientists, as well as the user market.
This Handbook presents a complete and rigorous overview of the fundamentals, methods and applications of the multidisciplinary field of Global Navigation Satellite Systems (GNSS), providing an exhaustive, one-stop reference work and a state-of-the-art description of GNSS as a key technology for science and society at large. All global and regional satellite navigation systems, both those currently in operation and those under development (GPS, GLONASS, Galileo, BeiDou, QZSS, IRNSS/NAVIC, SBAS), are examined in detail. The functional principles of receivers and antennas, as well as the advanced algorithms and models for GNSS parameter estimation, are rigorously discussed. The book covers the broad and diverse range of land, marine, air and space applications, from everyday GNSS to high-precision scientific applications and provides detailed descriptions of the most widely used GNSS format standards, covering receiver formats as well as IGS product and meta-data formats. The full coverage of the field of GNSS is presented in seven parts, from its fundamentals, through the treatment of global and regional navigation satellite systems, of receivers and antennas, and of algorithms and models, up to the broad and diverse range of applications in the areas of positioning and navigation, surveying, geodesy and geodynamics, and remote sensing and timing. Each chapter is written by international experts and amply illustrated with figures and photographs, making the book an invaluable resource for scientists, engineers, students and institutions alike.
The main objective of the ICITMS 2012 is to provide a platform for researchers, engineers, academics and industrial professionals from all over the world to present their research results and development activities in Information Technology and Management Science. This conference provides opportunities for the delegates to exchange new ideas and application experiences face to face, to establish business or research relations and to find global partners for future collaboration.