Download Free Noisy Optimization With Evolution Strategies Book in PDF and EPUB Free Download. You can read online Noisy Optimization With Evolution Strategies and write the review.

Noise is a common factor in most real-world optimization problems. Sources of noise can include physical measurement limitations, stochastic simulation models, incomplete sampling of large spaces, and human-computer interaction. Evolutionary algorithms are general, nature-inspired heuristics for numerical search and optimization that are frequently observed to be particularly robust with regard to the effects of noise. Noisy Optimization with Evolution Strategies contributes to the understanding of evolutionary optimization in the presence of noise by investigating the performance of evolution strategies, a type of evolutionary algorithm frequently employed for solving real-valued optimization problems. By considering simple noisy environments, results are obtained that describe how the performance of the strategies scales with both parameters of the problem and of the strategies considered. Such scaling laws allow for comparisons of different strategy variants, for tuning evolution strategies for maximum performance, and they offer insights and an understanding of the behavior of the strategies that go beyond what can be learned from mere experimentation. This first comprehensive work on noisy optimization with evolution strategies investigates the effects of systematic fitness overvaluation, the benefits of distributed populations, and the potential of genetic repair for optimization in the presence of noise. The relative robustness of evolution strategies is confirmed in a comparison with other direct search algorithms. Noisy Optimization with Evolution Strategies is an invaluable resource for researchers and practitioners of evolutionary algorithms.
Noisy optimization is a topic of growing interest for researchers working on mainstream optimization problems. Although several techniques for dealing with stochastic noise in optimization problems are covered in journals and conference proceedings, today there are virtually no books that approach noisy optimization from a layman’s perspective; this book remedies that gap. Beginning with the foundations of evolutionary optimization, the book subsequently explores the principles of noisy optimization in single and multi-objective settings, and presents detailed illustrations of the principles developed for application in real-world multi-agent coordination problems. Special emphasis is given to the design of intelligent algorithms for noisy optimization in real-time applications. The book is unique in terms of its content, writing style and above all its simplicity, which will appeal to readers with a broad range of backgrounds. The book is divided into 7 chapters, the first of which provides an introduction to Swarm and Evolutionary Optimization algorithms. Chapter 2 includes a thorough review of agent architectures for multi-agent coordination. In turn, Chapter 3 provides an extensive review of noisy optimization, while Chapter 4 addresses issues of noise handling in the context of single-objective optimization problems. An illustrative case study on multi-robot path-planning in the presence of measurement noise is also highlighted in this chapter. Chapter 5 deals with noisy multi-objective optimization and includes a case study on noisy multi-robot box-pushing. In Chapter 6, the authors examine the scope of various algorithms in noisy optimization problems. Lastly, Chapter 7 summarizes the main results obtained in the previous chapters and elaborates on the book’s potential with regard to real-world noisy optimization problems.
The Springer Handbook for Computational Intelligence is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of computational intelligence. This comprehensive handbook makes readers familiar with a broad spectrum of approaches to solve various problems in science and technology. Possible approaches include, for example, those being inspired by biology, living organisms and animate systems. Content is organized in seven parts: foundations; fuzzy logic; rough sets; evolutionary computation; neural networks; swarm intelligence and hybrid computational intelligence systems. Each Part is supervised by its own Part Editor(s) so that high-quality content as well as completeness are assured.
The use of evolutionary computation techniques has grown considerably over the past several years. Over this time, the use and applications of these techniques have been further enhanced resulting in a set of computational intelligence (also known as modern heuristics) tools that are particularly adept for solving complex optimization problems. Moreover, they are characteristically more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. Hence, evolutionary computation techniques have dealt with complex optimization problems better than traditional optimization techniques although they can be applied to easy and simple problems where conventional techniques work well. Clearly there is a need for a volume that both reviews state-of-the-art evolutionary computation techniques, and surveys the most recent developments in their use for solving complex OR/MS problems. This volume on Evolutionary Optimization seeks to fill this need. Evolutionary Optimization is a volume of invited papers written by leading researchers in the field. All papers were peer reviewed by at least two recognized reviewers. The book covers the foundation as well as the practical side of evolutionary optimization.
Spotlighting the field of Multidisciplinary Design Optimization (MDO), this book illustrates and implements state-of-the-art methodologies within the complex process of aerospace system design under uncertainties. The book provides approaches to integrating a multitude of components and constraints with the ultimate goal of reducing design cycles. Insights on a vast assortment of problems are provided, including discipline modeling, sensitivity analysis, uncertainty propagation, reliability analysis, and global multidisciplinary optimization. The extensive range of topics covered include areas of current open research. This Work is destined to become a fundamental reference for aerospace systems engineers, researchers, as well as for practitioners and engineers working in areas of optimization and uncertainty. Part I is largely comprised of fundamentals. Part II presents methodologies for single discipline problems with a review of existing uncertainty propagation, reliability analysis, and optimization techniques. Part III is dedicated to the uncertainty-based MDO and related issues. Part IV deals with three MDO related issues: the multifidelity, the multi-objective optimization and the mixed continuous/discrete optimization and Part V is devoted to test cases for aerospace vehicle design.
This book constitutes the refereed proceedings of the 8th International Conference on Parallel Problem Solving from Nature, PPSN 2004, held in Birmingham, UK, in September 2004. The 119 revised full papers presented were carefully reviewed and selected from 358 submissions. The papers address all current issues in biologically inspired computing; they are organized in topical sections on theoretical and foundational issues, new algorithms, applications, multi-objective optimization, co-evolution, robotics and multi-agent systems, and learning classifier systems and data mining.
This volume covers both classical results and the most recent theoretical developments in the field of randomized search heuristics such as runtime analysis, drift analysis and convergence.
This book constitutes the refereed proceedings of the 8th workshop on the foundations of genetic algorithms, FOGA 2005, held in Aizu-Wakamatsu City, Japan, in January 2005. The 16 revised full papers presented provide an outstanding source of reference for the field of theoretical evolutionary computation including evolution strategies, evolutionary programming, and genetic programming, as well as the continuing growth in interactions with other fields such as mathematics, physics, and biology.
This book constitutes the refereed proceedings of the 14th International Conference on Parallel Problem Solving from Nature, PPSN 2016, held in Edinburgh, UK, in September 2016. The total of 93 revised full papers were carefully reviewed and selected from 224 submissions. The meeting began with four workshops which offered an ideal opportunity to explore specific topics in intelligent transportation Workshop, landscape-aware heuristic search, natural computing in scheduling and timetabling, and advances in multi-modal optimization. PPSN XIV also included sixteen free tutorials to give us all the opportunity to learn about new aspects: gray box optimization in theory; theory of evolutionary computation; graph-based and cartesian genetic programming; theory of parallel evolutionary algorithms; promoting diversity in evolutionary optimization: why and how; evolutionary multi-objective optimization; intelligent systems for smart cities; advances on multi-modal optimization; evolutionary computation in cryptography; evolutionary robotics - a practical guide to experiment with real hardware; evolutionary algorithms and hyper-heuristics; a bridge between optimization over manifolds and evolutionary computation; implementing evolutionary algorithms in the cloud; the attainment function approach to performance evaluation in EMO; runtime analysis of evolutionary algorithms: basic introduction; meta-model assisted (evolutionary) optimization. The papers are organized in topical sections on adaption, self-adaption and parameter tuning; differential evolution and swarm intelligence; dynamic, uncertain and constrained environments; genetic programming; multi-objective, many-objective and multi-level optimization; parallel algorithms and hardware issues; real-word applications and modeling; theory; diversity and landscape analysis.
Inspired by the Darwinian framework of evolution through natural selection and adaptation, the field of evolutionary computation has been growing very rapidly, and is today involved in many diverse application areas. This book covers the latest advances in the theories, algorithms, and applications of simulated evolution and learning techniques. It provides insights into different evolutionary computation techniques and their applications in domains such as scheduling, control and power, robotics, signal processing, and bioinformatics. The book will be of significant value to all postgraduates, research scientists and practitioners dealing with evolutionary computation or complex real-world problems.This book has been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences