Download Free Noise In Dual Frequency Semiconductor And Solid State Lasers Book in PDF and EPUB Free Download. You can read online Noise In Dual Frequency Semiconductor And Solid State Lasers and write the review.

Coherent sources emitting two optical frequencies with a widely tunable frequency difference lying in the radio-frequency range and having a high degree of correlation between their fluctuations can be useful for numerous applications such as microwave photonics, ultra-stable atomic clocks, atom manipulation and probing, metrology, etc. Dual-frequency lasers, which emit two orthogonal linearly polarized modes with a frequency difference lying in the radio-frequency range, have huge potentials for the above mentioned applications. We compare the characteristics of such dual-frequency oscillation in lasers based on either semiconductor (VECSEL: vertical-external-cavity surface-emitting laser) or solid-state active media (mainly Nd3+, or Er3+ doped crystalline host). Apart from the obvious difference between the gain mechanisms in semiconductor and solid-state laser media, the dual-frequency VECSEL and the dual-frequency Nd:YAG laser exhibit different dynamical behaviors. The dual-frequency VECSELs exhibit relaxation oscillation free class-A dynamics as the photon lifetime inside the cavity is longer than the population inversion lifetime. On the contrary, the dual-frequency Nd:YAG lasers obey class-B dynamics linked with the fact that the photon lifetime inside the cavity is shorter than the population inversion lifetime, leading to the existence of relaxation oscillations. In this thesis, we figure out how the laser dynamics, in addition to the nonlinear coupling between the two laser modes, governs different noise phenomena in dual-frequency lasers. In particular, we demonstrate, both experimentally and theoretically, the influence of the laser dynamics and the nonlinear coupling between the two modes on the laser noise, by analyzing the spectral properties of the different noises (intensity, phase) and their correlation in a class-A dual-frequency VECSEL (vertical-external-cavity surface emitting laser) and a class-B dual-frequency Nd:YAG laser. Moreover, the noise correlation results are interpreted in terms of the linear response of two coupled damped oscillators.
Gives basic and up-to-date information about noise sources in electronic devices. Demonstrates how this information can be used to calculate the noise performance, in particular the noise figure, of electronic circuits using these devices. Optimization procedures, both for the circuits and for the devices, are then devised based on these data. Gives an elementary treatment of thermal noise, diffusion noise, and velocity-fluctuation noise, including quantum effects in thermal noise and maser noise.
This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.
This book gives a contemporary overview of the technologies of single-frequency fiber lasers. The development of single-frequency fiber lasers is one of the most significant achievements in the field of laser photonics over the past two decades. Owing to the crucial demands of a laser sources with highly stable single-frequency operation, narrow linewidth, low noise, scalable to high output power, compact and robustness structure, fiber lasers have been intensively studied since its introduction to the single-frequency laser community and they still continuously proceed to trigger the emergence of new technologies and applications. This book systematically demonstrates the single-frequency fiber laser technologies from fundamental principles to state-of-the-art progress. Details of selected typical applications of single-frequency fiber lasers are also given and discussed. The reader will acquire a good knowledge of the current situation within this important field.
Because of the favorable characteristics of solid-state lasers, they have become the preferred candidates for a wide range of applications in science and technology, including spectroscopy, atmospheric monitoring, micromachining, and precision metrology. Presenting the most recent developments in the field, Solid-State Lasers and Applications focuses on the design and applications of solid-state laser systems. With contributions from leading international experts, the book explores the latest research results and applications of solid-state lasers as well as various laser systems. The beginning chapters discuss current developments and applications of new solid-state gain media in different wavelength regions, including cerium-doped lasers in the ultraviolet range, ytterbium lasers near 1μm, rare-earth ion-doped lasers in the eye-safe region, and tunable Cr2+:ZnSe lasers in the mid-infrared range. The remaining chapters study specific modes of operation of solid-state laser systems, such as pulsed microchip lasers, high-power neodymium lasers, ultrafast solid-state lasers, amplification of femtosecond pulses with optical parametric amplifiers, and noise characteristics of solid-state lasers. Solid-State Lasers and Applications covers the most important aspects of the field to provide current, comprehensive coverage of solid-state lasers.
The replacement of thermionic devices by solid-state devices did not affect the fundamentals of thermal noise and shot noise but introduced a new range of applications and some new phenomena which is the subject of this book. Among the latter are generation-recombination noise, the still controversial 1/f noise, noise in avalanche devices and transferred-electron devices. Besides such semiconductor devices, also considered is noise in cryogenic devices, in charge-coupled devices, in ferromagnetic and ferroelectric materials and in radiation detectors.