Download Free Noise And Vibration Control On Ships Book in PDF and EPUB Free Download. You can read online Noise And Vibration Control On Ships and write the review.

This book introduces readers to basic approaches in and principles of marine nuclear power design, including overall reactor design, in-core design, coolant systems and devices, I&C system design, safety system design, and dynamic analysis assessment. It comprehensively reviews both the fundamentals of and latest trends in nuclear-powered devices, covering their entire lifespan, from design and testing to operation and decommissioning. Further, it explores in detail various real-world conditions in the marine context – such as insufficient space for equipment deployment and frequently changing operating conditions as well as swinging and tilting. Offering extensive information on the design and operation of marine nuclear power systems, the book is a valuable resource for researchers and professionals in the area of marine science and nuclear engineering, and graduate students intending to embark on a career in the field.
This book provides a guide for the marine community to understand and address the noise and vibration environment associated with ships. Controlling noise and vibration in an effective and optimal manner requires a comprehensive understanding of all the ship systems that are involved in achieving a quiet vessel. While there are numerous published articles addressing various components of shipboard noise and vibration, this represents the first comprehensive book on the subject. Beginning from the basic acoustics of noise and vibration, it builds to more complex considerations in undersea sound, ship design, and compliance. The book provides an understanding of the ‘source-path-receiver’ modelling of shipboard noise and vibration. It delivers an overview of how to select and optimize both noise and vibration control treatments along with design guidance and methods to demonstrate compliance with acoustic regulations. It reflects the knowledge gained by the authors consulting over 40years each on hundreds of vessels, and represents an invaluable resource for ship builders and marine engineers.
Two of the most acclaimed reference works in the area of acoustics in recent years have been our Encyclopedia of Acoustics, 4 Volume set and the Handbook of Acoustics spin-off. These works, edited by Malcolm Crocker, positioned Wiley as a major player in the acoustics reference market. With our recently published revision of Beranek & Ver's Noise and Vibration Control Engineering, Wiley is a highly respected name in the acoustics business. Crocker's new handbook covers an area of great importance to engineers and designers. Noise and vibration control is one largest areas of application of the acoustics topics covered in the successful encyclopedia and handbook. It is also an area that has been under-published in recent years. Crocker has positioned this reference to cover the gamut of topics while focusing more on the applications to industrial needs. In this way the book will become the best single source of need-to-know information for the professional markets.
International cooperation on the health of seafarers began many years ago. As early as 1921, an international convention regarding this matter was presented to govern ments of maritime countries for ratification. The First World Health Assembly, in 1948, recommended that WHO should establish, with the International Labour Of fice, a Joint Committee on the hygiene of seafarers. The first session of this Com mittee, held in 1949, defined the problems affecting the health of seamen and made a number of recommendations. In the opinion of this Joint Committee, the health of seamen called for interna tional attention for a nu mb er of reasons. By the nature of his work, the seafarer is obliged to travel from country to country and is exposed to great variations of cli mate and also to any disease that may be prevalent in the port of call. He may there fore become a carrier of disease, so that the protection of his health is of importance not only to himself and the other members of the crew but also to the populations of other countries he visits. Yet, on account ofthe nature ofhis employment, it is diffi cult to provide the seafarer with the same standard of health care that is gene rally available to other sections of the population.
ENGINEERING ACOUSTICS NOISE AND VIBRATION CONTROL A masterful introduction to the theory of acoustics along with methods for the control of noise and vibration In Engineering Acoustics: Noise and Vibration Control, two experts in the field review the fundamentals of acoustics, noise, and vibration. The authors show how this theoretical work can be applied to real-world problems such as the control of noise and vibration in aircraft, automobiles and trucks, machinery, and road and rail vehicles. Engineering Acoustics: Noise and Vibration Control covers a wide range of topics. The sixteen chapters include the following: Human hearing and individual and community response to noise and vibration Noise and vibration instrumentation and measurements Interior and exterior noise of aircraft as well as road and rail vehicles Methods for the control of noise and vibration in industrial equipment and machinery Use of theoretical models in absorptive and reactive muffler and silencer designs Practical applications of finite element, boundary element and statistical energy analysis Sound intensity theory, measurements, and applications Noise and vibration control in buildings How to design air-conditioning systems to minimize noise and vibration Readers, whether students, professional engineers, or community planners, will find numerous worked examples throughout the book, and useful references at the end of each chapter to support supplemental reading on specific topics. There is a detailed index and a glossary of terms in acoustics, noise, and vibration.
Noise and Vibration Control Engineering: Principles and Applications, Second Edition is the updated revision of the classic reference containing the most important noise control design information in a single volume of manageable size. Specific content updates include completely revised material on noise and vibration standards, updated information on active noise/vibration control, and the applications of these topics to heating, ventilating, and air conditioning.
A comprehensive and versatile treatment of an important and complex topic in vehicle design Written by an expert in the field with over 30 years of NVH experience, Noise and Vibration Control of Automotive Body offers nine informative chapters on all of the core knowledge required for noise, vibration, and harshness engineers to do their job properly. It starts with an introduction to noise and vibration problems; transfer of structural-borne noise and airborne noise to interior body; key techniques for body noise and vibration control; and noise and vibration control during vehicle development. The book then goes on to cover all the noise and vibration issues relating to the automotive body, including: overall body structure; local body structure; sound package; excitations exerted on the body and transfer functions; wind noise; body sound quality; body squeak and rattle; and the vehicle development process for an automotive body. Vehicle noise and vibration is one of the most important attributes for modern vehicles, and it is extremely important to understand and solve NVH problems. Noise and Vibration Control of Automotive Body offers comprehensive coverage of automotive body noise and vibration analysis and control, making it an excellent guide for body design engineers and testing engineers. Covers all the noise and vibration issues relating to the automotive body Features a thorough set of tables, illustrations, photographs, and examples Introduces automotive body structure and noise and vibration problems Pulls together the diverse topics of body structure, sound package, sound quality, squeak and rattle, and target setting Noise and Vibration Control of Automotive Body is a valuable reference for engineers, designers, researchers, and graduate students in the fields of automotive body design and NVH.
Noise and Vibration Analysis is a complete and practical guide that combines both signal processing and modal analysis theory with their practical application in noise and vibration analysis. It provides an invaluable, integrated guide for practicing engineers as well as a suitable introduction for students new to the topic of noise and vibration. Taking a practical learning approach, Brandt includes exercises that allow the content to be developed in an academic course framework or as supplementary material for private and further study. Addresses the theory and application of signal analysis procedures as they are applied in modern instruments and software for noise and vibration analysis Features numerous line diagrams and illustrations Accompanied by a web site at www.wiley.com/go/brandt with numerous MATLAB tools and examples. Noise and Vibration Analysis provides an excellent resource for researchers and engineers from automotive, aerospace, mechanical, or electronics industries who work with experimental or analytical vibration analysis and/or acoustics. It will also appeal to graduate students enrolled in vibration analysis, experimental structural dynamics, or applied signal analysis courses.
Most ocean vessels are underactuated but control of their motion in the real ocean environment is essential. Starting with a review of the background on ocean-vessel dynamics and nonlinear control theory, the authors’ systematic approach is based on various nontrivial coordinate transformations coupled with advanced nonlinear control design methods. This strategy is then used for the development and analysis of a number of ocean-vessel control systems with the aim of achieving advanced motion control tasks including stabilization, trajectory-tracking, path-tracking and path-following. Control of Ships and Underwater Vehicles offers the reader: - new results in the nonlinear control of underactuated ocean vessels; - efficient designs for the implementation of controllers on underactuated ocean vessels; - numerical simulations and real-time implementations of the control systems designed on a scale-model ship for each controller developed to illustrate their effectiveness and afford practical guidance.