Download Free Noaa Artificial Intelligence Strategic Plan Workshop Book in PDF and EPUB Free Download. You can read online Noaa Artificial Intelligence Strategic Plan Workshop and write the review.

This book examines law and governance implications in relation to maritime autonomous surface ships (MASS). Adopting a multi-disciplinary approach, it focuses on a wide array of timely, topical and thorny issues, including naval warfare and security, seaworthiness and techno-regulatory assessments, global environmental change, autonomous passenger transportation, as well as liability and insurance. It also considers selected national and regional developments. The book provides an insight into the role of innovation-diplomacy as the driving force that could expedite the transition from automation to autonomy. After navigating through the complex law and governance landscape, it concludes by assessing critical findings for further consideration. The book will appeal to scholars and students of maritime technology, law and governance. Chapter 11 and Chapter 18 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
How can environmental scientists and engineers use the increasing amount of available data to enhance our understanding of planet Earth, its systems and processes? This book describes various potential approaches based on artificial intelligence (AI) techniques, including neural networks, decision trees, genetic algorithms and fuzzy logic. Part I contains a series of tutorials describing the methods and the important considerations in applying them. In Part II, many practical examples illustrate the power of these techniques on actual environmental problems. International experts bring to life ways to apply AI to problems in the environmental sciences. While one culture entwines ideas with a thread, another links them with a red line. Thus, a “red thread“ ties the book together, weaving a tapestry that pictures the ‘natural’ data-driven AI methods in the light of the more traditional modeling techniques, and demonstrating the power of these data-based methods.
Artificial intelligence (AI) is a transformative technology that holds promise for tremendous societal and economic benefit. AI has the potential to revolutionize how we live, work, learn, discover, and communicate. AI research can further our national priorities, including increased economic prosperity, improved educational opportunities and quality of life, and enhanced national and homeland security. Because of these potential benefits, the U.S. government has invested in AI research for many years. Yet, as with any significant technology in which the Federal government has interest, there are not only tremendous opportunities but also a number of considerations that must be taken into account in guiding the overall direction of Federally-funded R&D in AI. On May 3, 2016, the Administration announced the formation of a new NSTC Subcommittee on Machine Learning and Artificial intelligence, to help coordinate Federal activity in AI.1 This Subcommittee, on June 15, 2016, directed the Subcommittee on Networking and Information Technology Research and Development (NITRD) to create a National Artificial Intelligence Research and Development Strategic Plan. A NITRD Task Force on Artificial Intelligence was then formed to define the Federal strategic priorities for AI R&D, with particular attention on areas that industry is unlikely to address. This National Artificial Intelligence R&D Strategic Plan establishes a set of objectives for Federally-funded AI research, both research occurring within the government as well as Federally-funded research occurring outside of government, such as in academia. The ultimate goal of this research is to produce new AI knowledge and technologies that provide a range of positive benefits to society, while minimizing the negative impacts.
The vast amounts of ontologically unstructured information on the Web, including HTML, XML and JSON documents, natural language documents, tweets, blogs, markups, and even structured documents like CSV tables, all contain useful knowledge that can present a tremendous advantage to the Artificial Intelligence community if extracted robustly, efficiently and semi-automatically as knowledge graphs. Domain-specific Knowledge Graph Construction (KGC) is an active research area that has recently witnessed impressive advances due to machine learning techniques like deep neural networks and word embeddings. This book will synthesize Knowledge Graph Construction over Web Data in an engaging and accessible manner. The book describes a timely topic for both early -and mid-career researchers. Every year, more papers continue to be published on knowledge graph construction, especially for difficult Web domains. This book serves as a useful reference, as well as an accessible but rigorous overview of this body of work. The book presents interdisciplinary connections when possible to engage researchers looking for new ideas or synergies. The book also appeals to practitioners in industry and data scientists since it has chapters on both data collection, as well as a chapter on querying and off-the-shelf implementations.
This is a theoretical and practical guide on how to undertake and navigate advanced research in the arts, humanities and social sciences.