Download Free Nmr Tomography And Spectroscopy In Medicine Book in PDF and EPUB Free Download. You can read online Nmr Tomography And Spectroscopy In Medicine and write the review.

Even the earliest applications of nuclear magnetic resonance (NMR) spectroscopy and tomography to medical inquiries, using experimental apparatus that was primitive by today's standards, demonstrated the extraordinary potential of the NMR method. The subsequent rapid advances in this area were due largely to the ef forts of commercial manufacturers, who, by improving magnet and computer designs, were able to produce and market instruments having a remarkable image quality. Experimental data from the ftrst systematic studies on the medical uses of NMR leave little doubt that NMR will gain a permanent place in clinical diagnosis. The clinician, then, is confronted with an entirely new diagnostic modality. Because NMR has been used extensively in chemistry and physics for years, a great many textbooks are already available on the subject. However, the majority of these have been written for the natural scientist who is well versed in mathematics and physics. Assumptions are made and terms are used that would not be appro priate for a medical or biochemical text. The goal of this introduc tion, therefore, is to discuss the principles of the NMR technique in terms that are meaningful to the medical student and medical pro fessional.
0 e From the reviews of the German edition: "NMR: readable yet professional... Through this book the reader with a scientific background becomes familiar with all important NMR phenomena, methods and conceptions... The great amount of carefully drawn figures and skillfully selected biologically relevant spectra and figures are an decisive bridge to the ... aim, to convey the NMR basics without mathematics. Besides biologists and physicians the book can be highly recommended to physicists and chemists..." #Nachrichten a. d. Chemie, Technik u. Laboratorien#1 "An extraordinary NMR textbook ... The authors succeeded in presenting the subject vividly. This book is clearly set out and easy to follow at a glance, and its numerous figures are extremely well done." #Labo#2
With an incredible 2400 illustrations, and written by a multitude of international experts, this book provides a comprehensive overview of both the physics and the clinical applications of MRI, including practical guidelines for imaging. The authors define the importance of MRI in the diagnosis of several disease groups in comparison or combination with other methods. Chapters dealing with basic principles of MRI, MR spectroscopy (MRS), interventional MRI and functional MRI (fMRI) illustrate the broad range of applications for MRI. Both standard and cutting-edge applications of MRI are included. Material on molecular imaging and nanotechnology give glimpses into the future of the field.
For almost a decade, quantitative NMR spectroscopy (qNMR) has been established as valuable tool in drug analysis. In all disciplines, i. e. drug identification, impurity profiling and assay, qNMR can be utilized. Separation techniques such as high performance liquid chromatography, gas chromatography, super fluid chromatography and capillary electrophoresis techniques, govern the purity evaluation of drugs. However, these techniques are not always able to solve the analytical problems often resulting in insufficient methods. Nevertheless such methods find their way into international pharmacopoeias. Thus, the aim of the book is to describe the possibilities of qNMR in pharmaceutical analysis. Beside the introduction to the physical fundamentals and techniques the principles of the application in drug analysis are described: quality evaluation of drugs, polymer characterization, natural products and corresponding reference compounds, metabolism, and solid phase NMR spectroscopy for the characterization drug substances, e.g. the water content, polymorphism, and drug formulations, e.g. tablets, powders. This part is accompanied by more special chapters dealing with representative examples. They give more detailed information by means of concrete examples. Combines theory, techniques, and concrete applications—all of which closely resemble the laboratory experience Considers international pharmacopoeias, addressing the concern for licensing Features the work of academics and researchers, appealing to a broad readership
NMR Imaging in Biomedicine: Advances in Magnetic Resonance discusses significant advances in NMR imaging and its application to the field of biomedicine. This book is organized into 10 chapters that cover the classification, methods, imaging regimes, and the potential use of NMR imaging in medicine. After discussing the basic theoretical ideas of NMR and its application to NMR imaging, this book presents mathematical analyses of the various NMR techniques, focusing primarily on the comparison in terms of imaging speed and data-acquisition rate. It also covers a number of practical ranges or imaging regimes in terms of sensitivity, sample size, and operating frequency. Significant topics on potential application of NMR imaging in medicine, apparatus requirements in the instrumentation of NMR imaging machines, and the principles of biomagnetic effects are discussed in other chapters. The considered biomagnetic effects are categorized into three main groups: the effects of static magnetic fields, the effects of relatively slow varying time-dependent fields, and radio-frequency magnetic fields. This book is of great value to radiologists, medical physicists, neuroradiologists, anatomists, physiologists, and postgraduate students of NMR imaging.
Nearly 20 million nuclear medicine procedures are carried out each year in the United States alone to diagnose and treat cancers, cardiovascular disease, and certain neurological disorders. Many of the advancements in nuclear medicine have been the result of research investments made during the past 50 years where these procedures are now a routine part of clinical care. Although nuclear medicine plays an important role in biomedical research and disease management, its promise is only beginning to be realized. Advancing Nuclear Medicine Through Innovation highlights the exciting emerging opportunities in nuclear medicine, which include assessing the efficacy of new drugs in development, individualizing treatment to the patient, and understanding the biology of human diseases. Health care and pharmaceutical professionals will be most interested in this book's examination of the challenges the field faces and its recommendations for ways to reduce these impediments.
MR is a powerful modality. At its most advanced, it can be used not just to image anatomy and pathology, but to investigate organ function, to probe in vivo chemistry, and even to visualise the brain thinking. However, clinicians, technologists and scientists struggle with the study of the subject. The result is sometimes an obscurity of understanding, or a dilution of scientific truth, resulting in misconceptions. This is why MRI from Picture to Proton has achieved its reputation for practical clarity. MR is introduced as a tool, with coverage starting from the images, equipment and scanning protocols and traced back towards the underlying physics theory. With new content on quantitative MRI, MR safety, multi-band excitation, Dixon imaging, MR elastography and advanced pulse sequences, and with additional supportive materials available on the book's website, this new edition is completely revised and updated to reflect the best use of modern MR technology.
A must-read for anyone working in electronics in the healthcare sector This one-of-a-kind book addresses state-of-the-art integrated circuit design in the context of medical imaging of the human body. It explores new opportunities in ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine (PET, SPECT), emerging detector technologies, circuit design techniques, new materials, and innovative system approaches. Divided into four clear parts and with contributions from a panel of international experts, Medical Imaging systematically covers: X-ray imaging and computed tomography–X-ray and CT imaging principles; Active Matrix Flat Panel Imagers (AMFPI) for diagnostic medical imaging applications; photon counting and integrating readout circuits; noise coupling in digital X-ray imaging Nuclear medicine–SPECT and PET imaging principles; low-noise electronics for radiation sensors Ultrasound imaging–Electronics for diagnostic ultrasonic imaging Magnetic resonance imaging–Magnetic resonance imaging principles; MRI technology
This book describes the advanced developments in methodology and applications of NMR spectroscopy to life science and materials science. Experts who are leaders in the development of new methods and applications of life and material sciences have contributed an exciting range of topics that cover recent advances in structural determination of biological and material molecules, dynamic aspects of biological and material molecules, and development of novel NMR techniques, including resolution and sensitivity enhancement. First, this book particularly emphasizes the experimental details for new researchers to use NMR spectroscopy and pick up the potentials of NMR spectroscopy. Second, the book is designed for those who are involved in either developing the technique or expanding the NMR application fields by applying them to specific samples. Third, the Nuclear Magnetic Resonance Society of Japan has organized this book not only for NMR members of Japan but also for readers worldwide who are interested in using NMR spectroscopy extensively.