Download Free Nmr Studies Of Molecules In Liquid Crystals And Graphite Book in PDF and EPUB Free Download. You can read online Nmr Studies Of Molecules In Liquid Crystals And Graphite and write the review.

This book presents the basic physics of ferroelectric and antiferroelectric liquid crystals in a simple and transparent way. It treats both the basic and the applied aspects of ferroelectric and antiferroelectric liquid crystal research, starting from the discovery of ferroelectricity in liquid crystals in 1975 and ending with the resonant X-ray experiment in ferrielectric and antiferrielectric phases in 1998. Particular attention is paid to the optical properties, electrooptic effects, phase transitions and experimental methods used in liquid crystal research. Special chapters are devoted to dielectric spectroscopy, light scattering, NMR, STM and AFM in complex fluids. The more than 300 illustrations help to present the basic physics of liquid crystalline ferroelectrics and antiferroelectrics in a way that can be easily followed by students, engineers and scientists dealing with liquid crystal research.
Properties and applications of high surface area materials depend on interfacial phenomena, including diffusion, sorption, dissolution, solvation, surface reactions, catalysis, and phase transitions. Among the physicochemical methods that give useful information regarding these complex phenomena, nuclear magnetic resonance (NMR) spectroscopy is the most universal, yielding detailed structural data regarding molecules, solids, and interfaces. Nuclear Magnetic Resonance Studies of Interfacial Phenomena summarizes NMR research results collected over the past three decades for a wide range of materials—from nanomaterials and nanocomposites to biomaterials, cells, tissues, and seeds. This book describes the applications of important new NMR spectroscopic methods to a variety of useful materials and compares them with results from other techniques such as adsorption, differential scanning calorimetry, thermally stimulated depolarization current, dielectric relaxation spectroscopy, infrared spectroscopy, optical microscopy, and small-angle and wide-angle x-ray scattering. The text explores the application of NMR spectroscopy to examine interfacial phenomena in objects of increasing complexity, beginning with unmodified and modified silica materials. It then describes properties of various mixed oxides with comparisons to individual oxides and also describes carbon materials such as graphite and carbon nanotubes. Chapters deal with carbon–mineral hybrids and their mosaic surface structures, and interfacial phenomena at the surface of natural and synthetics polymers. They also explore a variety of biosystems, which are much more complex, including biomacromolecules (proteins, DNA, and lipids), cells and tissues, and seeds and herbs. The authors cover trends in interfacial phenomena investigations, and the final chapter describes NMR and other methods used in the book. This text presents a comprehensive description of a large array of hard and soft materials, allowing the analysis of the structure–property relationships and generalities on the interfacial behavior of materials and adsorbates.
Much more than a slight revision, this second edition of the successful "Handbook of Liquid Crystals" is completely restructured and streamlined, with updated as well as completely new topics, 100% more content and a new team of editors and authors. As such, it fills the gap for a definitive, single source reference for all those working in the field of organized fluids and will set the standard for the next decade. The Handbook's new structure facilitates navigation and combines the presentation of the content by topic and by liquid-crystal type: A fundamentals volume sets the stage for an understanding of the liquid crystal state of matter, while individual volumes cover the main types and forms, with a final volume bringing together the diverse liquid crystal phases through their applications. This unrivaled, all-embracing coverage represents the undiluted knowledge on liquid crystals, making the Handbook a must-have wherever liquid crystals are investigated, produced or used, and in institutions where their science and technology is taught. Also available electronically on Wiley Online Library, www.wileyonlinelibrary.com/ref/holc Volume 1: Fundamentals of Liquid Crystals Volume 2: Physical Properties and Phase Behavior of Liquid Crystals Volume 3: Nematic and Chiral Nematic Liquid Crystals Volume 4: Smectic and Columnar Liquid Crystals Volume 5: Non-Conventional Liquid Crystals Volume 6: Nanostructured and Amphiphilic Liquid Crystals Volume 7: Supermolecular and Polymeric Liquid Crystals Volume 8: Applications of Liquid Crystals
Graphene-like materials have attracted considerable interest in the fields of condensed-matter physics, chemistry, and materials science due to their interesting properties as well as the promise of a broad range of applications in energy storage, electronic, optoelectronic, and photonic devices.The contents present the diverse phenomena under development in the grand quasiparticle framework through the first-principles calculations. The critical mechanisms, the orbital hybridizations and spin configurations of graphene-like materials through the chemical adsorptions, intercalations, substitutions, decorations, and heterojunctions, are taken into account. Specifically, the hydrogen-, oxygen-, transition-metal- and rare-earth-dependent compounds are thoroughly explored for the unusual spin distributions. The developed theoretical framework yields concise physical, chemical, and material pictures. The delicate evaluations are thoroughly conducted on the optimal lattices, the atom- and spin-dominated energy bands, the orbital-dependent sub-envelope functions, the spatial charge distributions, the atom- orbital- and spin-projected density of states, the spin densities, the magnetic moments, and the rich optical excitations. All consistent quantities are successfully identified by the multi-orbital hybridizations in various chemical bonds and guest- and host-induced spin configurations.The scope of the book is sufficiently broad and deep in terms of the geometric, electronic, magnetic, and optical properties of 3D, 2D, 1D, and 0D graphene-like materials with different kinds of chemical modifications. How to evaluate and analyze the first-principles results is discussed in detail. The development of the theoretical framework, which can present the diversified physical, chemical, and material phenomena, is obviously illustrated for each unusual condensed-matter system. To achieve concise physical and chemical pictures, the direct and close combinations of the numerical simulations and the phenomenological models are made frequently available via thorough discussions. It provides an obvious strategy for the theoretical framework, very useful for science and engineering communities.
As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids and Membranes". For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
Annual Reports on NMR Spectroscopy provides a thorough and in-depth accounting of the progress made in nuclear magnetic resonance (NMR) spectroscopy and its many applications. Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has gained as much significance as NMR spectroscopy. It is used in all branches of science in which precise structural determination is required, and in which the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a premier resource for both specialists and non-specialists alike who want to become familiar with the new techniques and applications of NMR spectroscopy. - Serves as the premier resource for learning the new techniques and applications of NMR spectroscopy - Provides a key reference for chemists and physicists using NMR spectroscopy to study the structure and dynamics of molecules