Download Free Nmr For Liquid Fossil Fuels Book in PDF and EPUB Free Download. You can read online Nmr For Liquid Fossil Fuels and write the review.

High resolution nuclear magnetic resonance (NMR) of liquid fuels has provided valuable information on the molecular structures present in these fuels. The chemical insight gained through NMR studies has the potential to enhance significantly the development of processes for the utilization of fossil energy. For this potential to be fully realized, users of NMR information must be able to communicate effectively with NMR experts. Conversely, NMR experts must understand the type of information that users will attempt to derive from their spectra. The goal of this book is to strengthen the lines of communication between NMR experts and users in the area of NMR of liquid fuels.The book comprises two parts. The first part presents elements of relevant NMR phenomenology, including a definition of the most important NMR parameters, an introduction to Fourier transform NMR and a discussion of newer pulse techniques. Sufficient background material is presented to enable the reader to follow such techniques as spin echo, two-dimensional and polarization transfer experiments. These techniques are illustrated by extensive examples derived from fuel chemistry. The second part of the book addresses the interpretation of NMR spectra and is based, to a very large extent, on the work of the authors who have used NMR in a variety of applications in fossil fuels. This part describes in detail the three basic methods for interpreting NMR spectra of liquid fuels: average structural parameter calculations, average molecule construction and functional group analysis. The use of NMR in engineering calculations is also presented and should be particularly useful to those interested in processing of fossil fuels. Extensive examples are drawn from petroleum, shale oils, coal liquids and model systems. Computer programs for performing the characterizations from the spectra are provided.The book will appeal to a wide range of professionals. With its emphasis on applications, it will be of particular interest to those who use NMR to characterize liquid fossil fuels or those who provide NMR assistance to fossil fuel scientists and technologists.
The goal of this book is to provide an introduction to the practical use of mobile NMR at a level as basic as the operation of a smart phone. Each description follows the same didactic pattern: introduction, basic theory, pulse sequences and parameters, beginners-level measurements, advanced-level measurements, and data processing. Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue depicting the brain function and the beating heart. In both applications large super-conducting magnets are employed which magnetize atomic nuclei of an object positioned inside the magnet. Their circulating motion is interrogated by radio-frequency waves. Depending on the operating mode, the frequency spectrum provides the chemist with molecular information, the medical doctor with anatomic images, while the materials scientist is interested in NMR relaxation parameters, which scale with material properties and determine the contrast in magnetic resonance images. Recent advances in magnet technology led to a variety of small permanent magnets, by which NMR spectra, images, and relaxation parameters can be measured with mobile and low-cost instruments.
Asphaltenes have traditionally been viewed as being extremely complex, thus very hard to characterize. In addition, certain fundamental properties of asphaltenes have pre viously been inaccessible to study by traditional macroscopic methods, further limiting understanding of asphaltenes. These limitations inhibited development of descriptions regarding the microscopic structure and solution dynamics of asphaltenes. However, a variety ofmore recent studies have implied that asphaltenes share many chemical properties with the smaller, more tractable components of crude oils. Recent measurements have indicated that asphaltene molecular weights are not as !arge as previously thought, perhaps in the range of 600 to I 000 amu. In addition, new experimental methods applied to asphaltene chemical structures have been quite revealing, yielding a broad understanding. Conse quently, the ability to relate chemical structure with physical and chemical properties can be developed and extended to the understanding of important commercial properties of asphal tenes. This book treats significant new developments in the fundamentals and applications of asphaltenes. In the first section ofthe book, new experimental methods are described that characterize asphaltene structures from the molecular to colloidallength scale. The colloidal properties are understandable in terms of asphaltene chemical structures, especially with regard to the heteroatom impact on bonding. However, quantitative measurements of the of asphaltene self-association still need to be determined. In the second section of enthalpy this book, the fundamental understanding of asphaltenes is related riirectly to asphaltene utilization.
With easily accessible oil reserves dwindling, petroleum engineers must have a sound understanding of how to access technically challenging resources, especially in the deepwater environment. These technically challenging resources bring with them complexities around fluid flow not normally associated with conventional production systems, and engineers must be knowledgeable about navigating these complexities. Practical Aspects of Flow Assurance in the Petroleum Industry aims to provide practical guidance on all aspects of flow assurance to offer readers a ready reference on how to ensure uninterrupted transport of processed fluids throughout the flow infrastructure by covering all practical aspects of flow assurance, being written in such a way that any engineer dealing with the oil and gas industry will be able to understand the material, containing solved examples on most topics, placing equal emphasis on experimental techniques and modeling methods, and devoting an entire chapter to the analysis and interpretation of published case studies. With its balance of theory and practical applications, this work provides petroleum engineers from a variety of backgrounds with the information needed to maintain and enhance productivity.
The book provides an in-depth review of the state of the art of NMR spectroscopy as applied to a wide range of geochemical problems. It is intended to assist geochemists and spectroscopists working at the interface between geochemistry and NMR, and almost all areas of organic and inorganic geochemistry where NMR has had an influence are discussed.
In comparison with other methods currently available for investigating the structure and dynamics of molecular NMR is egregious. The widespread applicability of the series of NMR techniques now commonly available is exemplified in the topics appearing in Annual Reports on NMR Spectroscopy Volume 33. - Applications of field-cycling NMR - Progress of high resolution NMR in solids - High pressure NMR - Molybdenum NMR spectroscopy - Applications of NMR in oil shale research
In the late 1990s, there was an explosion of research on ionic liquids and they are now a major topic of academic and industrial interest with numerous existing and potential applications. Since then, the number of scientific papers focusing on ionic liquids has risen exponentially, including a few edited multi-author books covering the latest advances in ionic liquids chemistry and several volumes of symposium proceedings. Much of the content in these books and volumes is written using technical jargon that only scientists at the cutting edge of ionic liquids research will understand and ionic liquids are hardly covered in most modern chemistry textbooks. This is the first single-author book on ionic liquids and the first introductory book on the topic. It is written in a clear, concise and consistent way. The book provides a useful introduction to ionic liquids for those readers who are not familiar with the topic. It is also wide ranging, embracing every aspect of the chemistry and applications of ionic liquids. The book draws extensively on the primary scientific literature to provide numerous examples of research on ionic liquids. These examples will enable the reader to become familiar with the key developments in ionic liquids chemistry over recent years. The book provides an introduction to: ionic liquids; their nomenclature; history; physical, chemical and biological properties; and their wide ranging uses and potential applications in catalysis, electrochemistry, inorganic chemistry, organic chemistry, analysis, biotechnology, green chemistry and clean technology. Notable and important chapters include "The Green Credentials of Ionic Liquids" and "Biotechnology." The chapter on "Applications" includes sections with brief descriptions of recent research on the development of ionic liquids: - for the construction of a liquid mirror for a moon telescope - for use as rocket propellants - for use as antimicrobial agents that combat MRSA - as active pharmaceutical ingredients and antiviral drugs - for embalming and tissue preservation Science students, researchers, teachers in academic institutions and chemists and other scientists in industry and government laboratories will find the book an invaluable introduction to one of the most rapidly advancing and exciting fields of science and technology today.