Download Free Nitrosation Reactions And The Chemistry Of Nitric Oxide Book in PDF and EPUB Free Download. You can read online Nitrosation Reactions And The Chemistry Of Nitric Oxide and write the review.

Since 1988, there has been much literature published on the chemistry of nitric oxide, particularly in the field of S-nitrosation and the chemistry of S-nitroso compounds. Written by a chemist for the chemistry community, this book provides an update of the chemistry of nitrosation reactions, dealing with both the synthetic and mechanistic aspects of these reactions. It also looks at the chemistry of nitric oxide in relation to the amazing biological properties of this simple diatomic molecule, which were unknown until around 1990.* Provides an update on previously published literature on nitric oxide chemistry* Contains chapters on reagents for nitrosation, nitrosation at nitrogen, aliphatic and aromatic carbon, oxygen, sulfur and metal centres* Looks at hot research topics such as synthesis, properties and reactions of s-nitrosothiols
Radicals for Life: the Various Forms of Nitric Oxide provides an up-to-date overview of the role of nitrosocompounds and nitrosyl-iron complexes in physiology. Nitrosocompounds can be considered as stabilised forms of nitric oxide, one of the most important regulatory molecules in physiology today. Many nitrosocompounds share some of the physiological functions of nitric oxide, and may be formed inside living organisms. This is the first book to be published that is dedicated to the role of such nitrosocompounds in physiology, with particular emphasis on the nitrosocompounds that are endogenously formed in higher organisms and humans. Points of discussion include: physical and chemical properties of the compounds, the main chemical pathways in vivo, as well as the physiological effects that have been recognised to date. Each of the nineteen chapters is written by distinguished specialists in the field, well known for their original and important contributions to the subject. Also included are results from a wide range of studies in vitro, in cell cultures, animal models and human volunteers. Examples of alternative forms of nitric oxide, with special emphasis on their protective role against widespread human diseases like atherosclerosis, Alzheimer's disease, diabetes, sexual dysfunction, and renal insufficiency to stroke and ischemia are also included. - First monograph to consider and provide an overview of endogenous nitrosocompounds and nitrosyl-iron complexes - Extensive bibliographic references, written by specialists of human physiology - Providing high scientific quality with a focus on implications for human diseases
Nitric oxide (NO) is a gas that transmits signals in an organism. Signal transmission by a gas that is produced by one cell and which penetrates through membranes and regulates the function of another cell represents an entirely new principle for signaling in biological systems. NO is a signal molecule of key importance for the cardiovascular system acting as a regulator of blood pressure and as a gatekeeper of blood flow to different organs. NO also exerts a series of other functions, such as acting a signal molecule in the nervous system and as a weapon against infections. NO is present in most living creatures and made by many different types of cells. NO research has led to new treatments for treating heart as well as lung diseases, shock, and impotence. Scientists are currently testing whether NO can be used to stop the growth of cancerous tumors, since the gas can induce programmed cell death, apoptosis. This book is the first comprehensive text on nitric oxide to cover all aspects--basic biology, chemistry, pathobiology, effects on various disease states, and therapeutic implications. - Edited by Nobel Laureate Louis J. Ignarro, editor of the Academic Press journal, Nitric Oxide - Authored by world experts on nitric oxide - Includes an overview of basic principles of biology and chemical biology - Covers principles of pathobiology, including the nervous system, cardiovascular function, pulmonary function, and immune defense
The Chemistry and Biology of Nitroxyl (HNO) provides first-of-its-kind coverage of the intriguing biologically active molecule called nitroxyl, or azanone per IUPAC nomenclature, which has been traditionally elusive due to its intrinsically high reactivity. This useful resource provides the scientific basis to understand the chemistry, biology, and technical aspects needed to deal with HNO. Building on two decades of nitric oxide and nitroxyl research, the editors and authors have created an indispensable guide for investigators across a wide variety of areas of chemistry (inorganic, organic, organometallic, biochemistry, physical, and analytical); biology (molecular, cellular, physiological, and enzymology); pharmacy; and medicine. This book begins by exploring the unique molecule's structure and reactivity, including important reactions with small molecules, thiols, porphyrins, and key proteins, before discussing chemical and biological sources of nitroxyl. Advanced chapters discuss methods for both trapping and detecting nitroxyl by spectroscopy, electrochemistry, and fluorescent inorganic cellular probing. Expanding on the compound's foundational chemistry, this book then explores its molecular physiology to offer insight into its biological implications, pharmacological effects, and practical issues. - Presents the first book on HNO (nitroxyl or azanone), an increasingly important molecule in biochemistry and pharmaceutical research - Provides a valuable coverage of HNO's chemical structure and significant reactions, including practical guidance on working with this highly reactive molecule - Contains high quality content from recognized experts in both industry and academia
This book is designed to collect and review the research covering main directions in investigations of aromatic nitroso compounds in last decades, and to present both, the academic aspects of this chemistry, as well as the open field of its applicability. The book is divided in five chapters. The basic structural properties of the nitroso aromatic molecules are described in the first chapter. The second chapter is an overview of the methods of preparations of aromatic nitroso and polynitroso compounds, including classical synthetic methods and some new preparative approaches. The third part deals with the physico-chemical properties of nitroso aromates and azodioxides, its structure, crystallography, quantum chemical calculations, spectroscopy, typical reactions, and especially it is focused on the dimerizations in the solid-state. In the fourth chapter is represented organometallic chemistry of nitroso aromatic molecules and its applications in catalysis. The last part of the book deals with the behavior of this class of compounds in the biological systems, reactions with biomolecules and the use in toxicology.
Nitrite and Nitrate in Human Health and Disease delivers a comprehensive review of nitrite and nitrate biology, from basic biochemistry to the complex physiology and metabolism of these two naturally occurring molecules in the human body. Well-organized and well referenced chapters cover the rich history of nitrite and nitrate, sources of exposure, and the physiological effects when consumed through foods containing nitrite and nitrate. The chapters are written by leading experts, all of whom share their research and perspectives in order to help define the context for benefits vs. any potential risks associated with nitrite and nitrate use, either through dietary ingestion or therapeutic dosing. This diverse collection of authors includes vascular biologists, physiologists, physicians, epidemiologists, cancer biologists, registered dieticians, chemists, and public health experts from five countries in both academia and government. Nitrite and Nitrate in Human Health and Disease provides a balanced view of nitric oxide biochemistry, and nitrite and nitrate biochemistry in physiology and in the food sciences.
Provides a one-volume overall picture of the largest of the classical divisions of organic chemistry, suitable for the graduate or advanced undergraduate student, as well as for research workers, both specialists in the field and those engaged in another discipline and requiring knowledge of heterocyclic chemistry. It represents Volume 9 of Comprehensive Heterocyclic Chemistry and utilizes the general chapters which appear in the 8-volume work. The highly systematic coverage given to the subject makes this the most authoritative one-volume account of modern heterocyclic chemistry available.
The chemistry, biochemistry and pharmacology of heparin and heparan sulfate have been and continue to be a major scientific undertaking - heparin and its derivative remain important drugs in clinical practice. Chemistry and Biology of Heparin and Heparan Sulfate provides readers with an insight into the chemistry, biology and clinical applications of heparin and heparan sulfate and examines their function in various physiological and pathological conditions. Providing a wealth of useful information, no other tome covers the diversity of topics in the field. Students, doctors, chemists, biochemists, and research scientists will find this book an invaluable source for updating their current knowledge of developments in this area. - Comprehensively reviews all aspects of heparin and heparan sulfate research - Uniquely describes the chemistry, biology and clinical application of heparins and heparan sulfates in one work - Provides an invaluable source of knowledge of current developments for chemists, biochemists, medical doctors, researchers, students and practitioners
This Special Issue is a collection of research articles focused on the production and role of nitric oxide in plants. Nitric oxide is a crucial molecule used in the orchestration of cellular events in animals and plants. With a mixture of primary research papers and review articles written by some of the top researchers in the field, this work encompasses many aspects of this important and growing area of biochemistry.
This textbook focuses on the vascular biology and physiology that underlie vascular disorders in clinical medicine. Vascular biomedicine is a rapidly growing field as new molecular mechanisms of vascular health and disease are unraveled. Many of the major cardiovascular diseases including coronary artery disease, heart failure, stroke and vascular dementia are diseases of the vasculature. In addition vascular injury underpins conditions like kidney failure and cardiovascular complications of diabetes. This field is truly multidisciplinary involving scientists in many domains such as molecular and vascular biology, cardiovascular physiology and pharmacology and immunology and inflammation. Clinically, specialists across multiple disciplines are involved in the management of patients with vascular disorders, including cardiologists, nephrologists, endocrinologists, neurologists and vascular surgeons. This book covers a wide range of topics and provides an overview of the discipline of vascular biomedicine without aiming at in-depth reviews, but rather offering up-to-date knowledge organized in concise and structured chapters, with key points and pertinent references. The structure of the content provides an integrative and translational approach from basic science (e.g. stem cells) to clinical medicine (e.g. cardiovascular disease). The content of this book is targeted to those who are new in the field of vascular biology and vascular medicine and is ideal for medical students, graduate and postgraduate students, clinical fellows and academic clinicians with an interest in the vascular biology and physiology of cardiovascular disease and related pathologies.