Download Free Nitrogen Use And Behavior In Crop Production Book in PDF and EPUB Free Download. You can read online Nitrogen Use And Behavior In Crop Production and write the review.

Most plants absorbmore nitrogen than any other nutrient. Because the amount needed is so large and easily be lost from many soils, nitrogen is usually the most limiting nutrient for plant growth. Although about 79 percent of the atmosphere is nitrogen, only nitrogen-fixingplants such as legumeswith their associated bacteria are able to use this abundant source. The nonleguminous grain crops must receive supplemental nitrogen to produce satisfactory yields. Until the last few decades the supply of available nitrogen in the soil was increased primarily by legumes and manure. These sources should be used when economically feasible, but many important grain-producing areas of the world must now rely on commercial fertilizer nitrogen. For economic reasons researchers and growers have been interested for many years in improving yields from each unit of nitrogen. Recently, however, the efficient use of nitrogen has become an environmental issue as well, because high nitrate concentrations in water may be harmful to humans, especiali infants, and to livestock. If plants absorb more of the addedfertilizer nitrogen, then less is likely to leach from fields into drinking water. Improving nitrogen efficiency has also become crucial in order to conserve dwinling supplies of natural gas, which is used in large quantities to manufacture nitrogenfertilizers.
Among crop nutrients, nitrogen has the most complex chemistry and behavior in soil, gives the largest yield responses, and is the most difficult to manage. Managing Nitrogen in Crop Production condenses the latest research and thinking from leading experts in nitrogen. The result will increase your understanding of nitrogen and your odds of managing it successfully.
Nitrogen is indispensable to all life on Earth. However, humans now dominate the nitrogen cycle, and nitrogen emissions from human activity have real costs: water and air pollution, climate change, and detrimental effects on human health, biodiversity, and natural habitats. Too little nitrogen limits ecosystem processes, while too much nitrogen transforms ecosystems profoundly. The California Nitrogen Assessment is the first comprehensive account of nitrogen flows, practices, and policies for California, encompassing all nitrogen flows—not just those associated with agriculture—and their impacts on ecosystem services and human wellbeing. How California handles nitrogen issues will be of interest nationally and internationally, and the goal of the assessment is to link science with action and to produce information that affects both future policy and solutions for addressing nitrogen pollution. This book also provides a model for application of integrated ecosystem assessment methods at regional and state (subnational) levels.
Written in easy to follow language, the book presents cutting-edge agriculturally relevant plant biotechnologies and applications in a manner that is accessible to all. This book introduces the scope and method of plant biotechnologies and molecular breeding within the context of environmental analysis and assessment, a diminishing supply of productive arable land, scarce water resources and climate change. Authors who have studied how agro ecosystems have changed during the first decade and a half of commercial deployment review effects and stress needs that must be considered to make these tools sustainable.
Nitrogen in the Environment: Sources, Problems, and Management is the first volume to provide a holistic perspective and comprehensive treatment of nitrogen from field, to ecosystem, to treatment of urban and rural drinking water supplies, while also including a historical overview, human health impacts and policy considerations. It provides a worldwide perspective on nitrogen and agriculture. Nitrogen is one of the most critical elements required in agricultural systems for the production of crops for feed, food and fiber. The ever-increasing world population requires increasing use of nitrogen in agriculture to supply human needs for dietary protein. Worldwide demand for nitrogen will increase as a direct response to increasing population. Strategies and perspectives are considered to improve nitrogen-use efficiency. Issues of nitrogen in crop and human nutrition, and transport and transformations along the continuum from farm field to ground water, watersheds, streams, rivers, and coastal marine environments are discussed. Described are aerial transport of nitrogen from livestock and agricultural systems and the potential for deposition and impacts. The current status of nitrogen in the environment in selected terrestrial and coastal environments and crop and forest ecosystems and development of emerging technologies to minimize nitrogen impacts on the environment are addressed. The nitrogen cycle provides a framework for assessing broad scale or even global strategies to improve nitrogen use efficiency. Growing human populations are the driving force that requires increased nitrogen inputs. These increasing inputs into the food-production system directly result in increased livestock and human-excretory nitrogen contribution into the environment. The scope of this book is diverse, covering a range of topics and issues from furthering our understanding of nitrogen in the environment to policy considerations at both farm and national scales.
Presenting the first continental-scale assessment of reactive nitrogen in the environment, this book sets the related environmental problems in context by providing a multidisciplinary introduction to the nitrogen cycle processes. Issues of upscaling from farm plot and city to national and continental scales are addressed in detail with emphasis on opportunities for better management at local to global levels. The five key societal threats posed by reactive nitrogen are assessed, providing a framework for joined-up management of the nitrogen cycle in Europe, including the first cost-benefit analysis for different reactive nitrogen forms and future scenarios. Incorporating comprehensive maps, a handy technical synopsis and a summary for policy makers, this landmark volume is an essential reference for academic researchers across a wide range of disciplines, as well as stakeholders and policy makers. It is also a valuable tool in communicating the key environmental issues and future challenges to the wider public.
Most plants absorbmore nitrogen than any other nutrient. Because the amount needed is so large and easily be lost from many soils, nitrogen is usually the most limiting nutrient for plant growth. Although about 79 percent of the atmosphere is nitrogen, only nitrogen-fixingplants such as legumeswith their associated bacteria are able to use this abundant source. The nonleguminous grain crops must receive supplemental nitrogen to produce satisfactory yields. Until the last few decades the supply of available nitrogen in the soil was increased primarily by legumes and manure. These sources should be used when economically feasible, but many important grain-producing areas of the world must now rely on commercial fertilizer nitrogen. For economic reasons researchers and growers have been interested for many years in improving yields from each unit of nitrogen. Recently, however, the efficient use of nitrogen has become an environmental issue as well, because high nitrate concentrations in water may be harmful to humans, especiali infants, and to livestock. If plants absorb more of the addedfertilizer nitrogen, then less is likely to leach from fields into drinking water. Improving nitrogen efficiency has also become crucial in order to conserve dwinling supplies of natural gas, which is used in large quantities to manufacture nitrogenfertilizers.
Nitrogen is an essential element for plant growth and development and a key agricultural input-but in excess it can lead to a host of problems for human and ecological health. Across the globe, distribution of fertilizer nitrogen is very uneven, with some areas subject to nitrogen pollution and others suffering from reduced soil fertility, diminished crop production, and other consequences of inadequate supply. Agriculture and the Nitrogen Cycle provides a global assessment of the role of nitrogen fertilizer in the nitrogen cycle. The focus of the book is regional, emphasizing the need to maintain food and fiber production while minimizing environmental impacts where fertilizer is abundant, and the need to enhance fertilizer utilization in systems where nitrogen is limited. The book is derived from a workshop held by the Scientific Committee on Problems of the Environment (SCOPE) in Kampala, Uganda, that brought together the world's leading scientists to examine and discuss the nitrogen cycle and related problems. It contains an overview chapter that summarizes the group's findings, four chapters on cross-cutting issues, and thirteen background chapters. The book offers a unique synthesis and provides an up-to-date, broad perspective on the issues of nitrogen fertilizer in food production and the interaction of nitrogen and the environment.