Download Free Nitric Oxide Part F Book in PDF and EPUB Free Download. You can read online Nitric Oxide Part F and write the review.

This book presents WHO guidelines for the protection of public health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethylene, have indoor sources, are known in respect of their hazardousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmental exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. They provide a scientific basis for legally enforceable standards.
The discovery that nitrogen monoxide or nitric oxide (NO)is a biologically produced free radical has revolutionized our thinking about physiological and pathological processes. This discovery has ignited enormous interest in the scientific community. When generated at low levels, NO is a signaling molecule, but at high concentration, NO is a cytotoxic molecule. The physiological and pathological processes of NO production and metabolism and its targets, currently areas of intensive research, have important pharmacologic implications for health and disease.
This book covers the key features of nitric oxide (NO) in plants. Comprising nine chapters, Part I highlights its metabolism and identification in plants. Part II, which consists of eight chapters, focuses on the chemical, physical and biochemical properties of the NO molecule and its derivatives; on its functional role and mode of action; and on its signaling and interaction with phytohormones, mineral nutrients, biomolecules, ions and ion channels in plants under abiotic stresses. Combining the expertise of leading researchers in the field, the book provides a concise overview of plant NO biology and offers a valuable reference work.
Nitric oxide (NO) is a gas that transmits signals in an organism. Signal transmission by a gas that is produced by one cell and which penetrates through membranes and regulates the function of another cell represents an entirely new principle for signaling in biological systems. NO is a signal molecule of key importance for the cardiovascular system acting as a regulator of blood pressure and as a gatekeeper of blood flow to different organs. NO also exerts a series of other functions, such as acting a signal molecule in the nervous system and as a weapon against infections. NO is present in most living creatures and made by many different types of cells. NO research has led to new treatments for treating heart as well as lung diseases, shock, and impotence. Scientists are currently testing whether NO can be used to stop the growth of cancerous tumors, since the gas can induce programmed cell death, apoptosis. This book is the first comprehensive text on nitric oxide to cover all aspects--basic biology, chemistry, pathobiology, effects on various disease states, and therapeutic implications. - Edited by Nobel Laureate Louis J. Ignarro, editor of the Academic Press journal, Nitric Oxide - Authored by world experts on nitric oxide - Includes an overview of basic principles of biology and chemical biology - Covers principles of pathobiology, including the nervous system, cardiovascular function, pulmonary function, and immune defense
Dr. Louis Ignarro discovered "the atom" of cardiovascular health--a tiny molecule called Nitric Oxide. NO, as it is known by chemists, is a signaling molecule produced by the body, and is a vasodilator that helps control blood flow to every part of the body. Dr. Ignarro's findings led to the development of Viagra. Nitric Oxide has a beneficial effect on the cardiovascular system as well. NO relaxes and enlarges the blood vessels, prevents blood clots that trigger strokes and heart attacks, and regulates blood pressure and the accumulation of plaque in the blood vessels. Dr. Ignarro's current research indicates that Nitric Oxide may help lower cholesterol by facilitating the actions of statin drugs like Lipitor. The goal of the regimen presented in NO More Heart Disease is to age proof the cardiovascular system, keeping the vascular network clean and elastic through enhanced NO productivity. The plan is easy-to-follow without extreme lifestyle adjustments, involving taking supplements to stimulate Nitric Oxide production, incorporating NO friendly food into the diet, and a moderate exercise program.
Each volume of Advances in Pharmacology provides a rich collection of reviews on timely topics. Emphasis is placed on the molecular bases of drug action, both applied and experimental. This volume contains chapters that address diverse but interrelated areas pertaining to the chemistry, biochemistry, molecular biology, and pharmacology of nitric oxide in mammalian cells. The contents form a comprehensive treatise of factors influencing the control of nitric oxide production in various cell types. Highlights * Presents comprehensive coverage of the chemical properties of nitric oxide and how they form the basis for the multifaceted biological actions for nitric oxide * Contains the most current and detailed documentation of the properties and regulation of nitric oxide synthases * Provides the most up-to-date review of inhalational nitric oxide therapy for treatment of respiratory dysfunction
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
Nitrite and Nitrate in Human Health and Disease delivers a comprehensive review of nitrite and nitrate biology, from basic biochemistry to the complex physiology and metabolism of these two naturally occurring molecules in the human body. Well-organized and well referenced chapters cover the rich history of nitrite and nitrate, sources of exposure, and the physiological effects when consumed through foods containing nitrite and nitrate. The chapters are written by leading experts, all of whom share their research and perspectives in order to help define the context for benefits vs. any potential risks associated with nitrite and nitrate use, either through dietary ingestion or therapeutic dosing. This diverse collection of authors includes vascular biologists, physiologists, physicians, epidemiologists, cancer biologists, registered dieticians, chemists, and public health experts from five countries in both academia and government. Nitrite and Nitrate in Human Health and Disease provides a balanced view of nitric oxide biochemistry, and nitrite and nitrate biochemistry in physiology and in the food sciences.
Proceedings of a NATO ARW held in Crete, Greece, June 22-July 1, 1996