Download Free Ninth Workshop On Parallel And Distributed Simulation Pads95 Book in PDF and EPUB Free Download. You can read online Ninth Workshop On Parallel And Distributed Simulation Pads95 and write the review.

This book constitutes the refereed proceedings of 11 IPPS/SPDP '98 Workshops held in conjunction with the 13th International Parallel Processing Symposium and the 10th Symposium on Parallel and Distributed Processing in San Juan, Puerto Rico, USA in April 1999. The 126 revised papers presented were carefully selected from a wealth of papers submitted. The papers are organised in topical sections on biologically inspired solutions to parallel processing problems: High-Level Parallel Programming Models and Supportive Environments; Biologically Inspired Solutions to Parallel Processing; Parallel and Distributed Real-Time Systems; Run-Time Systems for Parallel Programming; Reconfigurable Architectures; Java for Parallel and Distributed Computing; Optics and Computer Science; Solving Irregularly Structured Problems in Parallel; Personal Computer Based Workstation Networks; Formal Methods for Parallel Programming; Embedded HPC Systems and Applications.
Discrete-event simulation has long been an integral part of the design process of complex engineering systems and the modelling of natural phenomena. Many of the systems that we seek to understand or control can be modelled as digital systems. In a digital model, we view the system at discrete instants of time, in effect taking snapshots of the system at these instants. For example, in a computer network simulation an event can be the sending of a message from one node to another node while in a VLSI logic simulation, the arrival of a signal at a gate may be viewed as an event. Digital systems such as computer systems are naturally susceptible to this approach. However, a variety of other systems may also be modelled this way. These include transportation systems such as air-traffic control systems, epidemiological models such as the spreading of a virus, and military war-gaming models. This book is representative of the advances in this field.
It is widely recognized that the complexity of parallel and distributed systems is such that proper tools must be employed during their design stage in order to achieve the quantitative goals for which they are intended. This volume collects recent research results obtained within the Basic Research Action Qmips, which bears on the quantitative analysis of parallel and distributed architectures. Part 1 is devoted to research on the usage of general formalisms stemming from theoretical computer science in quantitative performance modeling of parallel systems. It contains research papers on process algebras, on Petri nets, and on queueing networks. The contributions in Part 2 are concerned with solution techniques. This part is expected to allow the reader to identify among the general formalisms of Part I, those that are amenable to an efficient mathematical treatment in the perspective of quantitative information. The common theme of Part 3 is the application of the analytical results of Part 2 to the performance evaluation and optimization of parallel and distributed systems. Part 1. Stochastic Process Algebras are used by N. Gotz, H. Hermanns, U. Herzog, V. Mertsiotakis and M. Rettelbach as a novel approach for the struc tured design and analysis of both the functional behaviour and performability (i.e performance and dependability) characteristics of parallel and distributed systems. This is achieved by integrating stochastic modeling and analysis into the powerful and well investigated formal description techniques of process algebras.
The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing.
Annotation Consists of 22 papers presented at the May 2001 workshop, dealing with conservative simulation, optimistic simulation, high level architecture, applications, and optimizing parallel simulation. Some of the topics are improving lookahead in PDES of large-scale applications using compiler analysis, a causality based time management mechanism for federated simulation, the dependence list in time warp, and an agent-based DDM for high level architecture. Other topics include aviation modeling, virtual time synchronization over unreliable network transport, a scaled version of the elastic time algorithm, and speedup of a sparse system simulation. No subject index. c. Book News Inc.
Papers from an October 2002 workshop report on recent research in distributed simulation and related fields of performance evaluation and real-time systems. Papers are organized in sections on HLA RTI and performance, HLA FEDEP, performance evaluation, simulation architectures and environments, and
This volume contains the Proceedings of the International Symposium on C- puting in Object-Oriented Parallel Environments (ISCOPE ’98), held at Santa 1 Fe, New Mexico, USA on December 8{11, 1998. ISCOPE is in its second year, and continues to grow both in attendance and in the diversity of the subjects covered. ISCOPE’97 and its predecessor conferences focused more narrowly on scienti c computing in the high-performance arena. ISCOPE ’98 retains this emphasis, but has broadened to include discrete-event simulation, mobile c- puting, and web-based metacomputing. The ISCOPE ’98 Program Committee received 39 submissions, and acc- ted 10 (26%) as Regular Papers, based on their excellent content, maturity of development, and likelihood for widespread interest. These 10 are divided into three technical categories. Applications: The rst paper describes an approach to simulating advanced nuclear power reactor designs that incorporates multiple local solution - thods and a natural extension to parallel execution. The second paper disc- ses a Time Warp simulation kernel that is highly con gurable and portable. The third gives an account of the development of software for simulating high-intensity charged particle beams in linear particle accelerators, based on the POOMA framework, that shows performance considerably better than an HPF version, along with good parallel speedup.